PERSISTENGE: JOURNALING, LFS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Out no@

Discussion today: Project 5

AGENDA / LEARNING OUTCOMES

How to use journaling to maintain consistency during crashes?

How to design a filesystem that performs better for small writes?

RECAP

™ °"’£f;i”“ " ORSSTRUCTS
&”’ e fbapf
&-\lﬂrﬁlnn%ﬂ m/mmmmmmm
NEEEEEEE [BEDEDEEEE
NEEEEEEE HDEDEDEEED
%mmmmmm% i:%mmmmmmié

16

DIDJIDIDIDIDIDED.
32 39
DIDJDIDIDIDIDED.
48 55

FFS POLICY SUMMARY -

> ey (}N)\ A
File inodes: allocate in same/group with dir D CD’“‘

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block
WW/

‘La/rg_e_ﬂg,data blocks: afterﬁ_@, g0o to new group.

Move to another group (w/ fewer than avg blocks) every subsequent |MB.
L~

HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #l:
FSCK = file system checker
_(—,—[
Strategy:
After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?

Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be |; else bit is O

FSCK CHECKS

*)

(A
Do superblocks match? q(’:\d,ﬂw BI(-
Is the list of free blocks correct? T~

— R -
Do number of dir entries equal inode link counts? /\\@\‘

Do different inodes ever point to same block? 5
“4
Are there any bad block pointers? 5~

Do directories contain ““.’ and “..’?
\P\m uﬂc\L

L node N o
j&)\«\%\ o \(\\“&w W

BUNNY 18

https://tinyurl.com/cs537-sp19-bunny |8

BUNN/Y 1 8 https://tinyurl.com/cs537-sp|9-bunny 18

Inode Bitmap : 10000000 7

Inode Table : [size=1,ptr%,type=d]®[] [1 [1 [1 [1 1]

Data Bitmap : 10000000 '; - -
(" 0)]

Data : [("."0), (y 1 01 01 01 101 0

There are only eight inodes and eight data blocks; each of these is managed by a corresponding bitmap. The inode
table shows the contents of each of eight inodes, with an individual inode enclosed between square brackets; in the
initial state above, only inode O is in use. When an inode is used, its size and pointer field are updated accordingly
(in this question, files can only be one block in size; hence a single inom an inode is free, it is marked
with a pair of empty brackets like these “[]”. Mhere are only two Ele/types: directories (type=d) and regular
ﬁles Data blocks are either “in use” and filled with something, or “free” and marked accordingly withﬂk’.

Directory—contents are shown in data blocks as comma-separated lists of tuples like: (“name”, inode number), The

root inode number is mﬁ —

(a) INITIAL STATE: State(i) as above to FINAL STATE (a): 7\ 0}’0}7 ‘\Q/ '
(st oy

v
Inode Bitmap : 11000000 Qg /\/- ‘/L_ w

Inode Table : [size=1,ptr=0,type=d] [size=&,ptr=e,type=r] [] [] [] [] [] [] /N

)

o

Data Bitmap : 1R000000 XK

Data : [! 0), (".." 0), ("£" ﬁ[fﬁ[] [1 0] []\l /Q c
i-4©Nl\

Operation that caused this change?

BUNNY 18

a
o O 5
A Q}_ q}
(f) FILE SYSTEM STATE: Consistent or inconsistent? If inconsistent, how to fix?

Inode Bitmap : 11100000

Inode Table : [size=1l,ptr=0,type=d] [size=1,ptr=1,typef:) [size=1,ptr=2,type%§) [1 [1 [1 [1 T[]
Data Bitmap : 11100000 -
Data s [(." 0),(".." 0)] [DATA] [DATA] [] []1 [1 [1 I[1 Q R&@ﬂJ\

,Nw"a' NV <° ol

CONSISTENCY SOLUTION #2: JOURNALING

Goals

— Ok to do some recovery work after crash, but not to read entire disk @Va,\fd
— Don’t move file system to just any consistent stateMect stag >£ /r\ W/B

Atomicity A o - .% [Jo/f"

— Definition of atomicity for concurrency: operations in critical sections are not
interrupted by operations on related critical sections

— Definition of atomicity for persistence: collections of writes are not interrupted
by crashes; either (all new) or (all old) data is visible

@/ * ORDERING FORCONSISTENGY ™

/
A Sx _ T
B C A T Q,L C/ /(W
o 1 2 3 @ s (¢ 7 8 9 10 1 1
transaction: write C to block 4 wrlteT to block 6
wﬂ“‘“ wg?”’ write order_. T, Start itk Hacks "\ 4@““& Jlbacle
ek A, b r/é(,? ot \\b@clL [*
g T = e »
P o2cC
e QO;(MLQ&”HM Wt o Pl . j | can he
Tl -0] P euned

ORDERING FOR GONSISTENCY

\

/
B C A T 4&‘1}04/&#’\
4

0 I 2 3 5 6 7 8 9 10 Il 12
Barriers write order
1) Before journal commit, ensure journal entries-complete 2,10,11

2) Before checkpoint, ensure journal commit complete— _ 12
3) Before free journal, ensure in-place updates complete o 46 |

L/——//;
2

CHECKSUM OPTIMIZATION

Can we get rid of barrier between (9, 10, I) and 12 ?

/ \

{L‘“ (1\[3’1

B A g(y O /q 0(49“"‘
OI2345678}9IOIII2l

[

~

~ . P\
In last transaction block, stor erte order before O! I g

of rest of transaction
e 0\0./\(44

During recovery: If checksum does not
match, treat as not valid

46
12

OTHER OPTIMIZATIONS o 4

pakeh 2l oPp
@tched ugda@]) x/:i):):w
- If two files are created, inode bitmap, inode etc. get written twice ' o
- Mark as dirty in-memory and batch updates P}l‘\/”ﬂjf v
3
2
c e T
\Circular log &QJ\,J‘K/ \\& \/ (_jj__wf/—\

JOU"E Tl T2 T3 T4 U*"Q"L e
0 < 128 MB M (k™

HOW TO AVOID WRITING ALL DISK BLOCKS TWICE?

Observation: Most of writes are user data (esp sequential writes)

Strategy: journal all metadata, including

<

superblock, bitmaps, inodes, indirects, directories
———— C—"-’_\

For regular data, write it back whenever convenient.

METADATA JOURNALI

transaction: append to inode |

Crash !?!

NG w,.,&—

Aot

™XB B I TxE
9 |0 | 1 |12
B o
£ 4 oo

. ORDERED JOURNALING

Still only journal metadata

But write data before the transaction!

A I

vy

Tr
B | D x b T
0 | 2 3 4 5 6 7 8 9 10 | 12
OA,\

What happens if crash now? C! W (SQ\MJ
B indicates D currently free, | does not point to D; 1o

Lose D, but that might be acceptable

(am 1orovl

LI hareier (]» /—b\)ﬂ«{—& b)’(/ fo L&

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK: —> Ueideer

Fix file system image after crash happens

e’ Y

Too slow and only ensures consistency

Journaling

_J
Write a transaction before in-place updates
‘Checksum, batching

—p Ordered journal avoids data writes

BUNNY 19: IDENTIFY THE KIND UF JUURNALING

https: //tlnyurl com/cs537-

ol T A e (o] b fe]ufs,

We need to write data in block 5,6.Inode is block 4, bitmap in block 2

@ Journal is from blocks 8 to 15 @ EJ
Write 5,6 —>W% v Write 8,9,10,11,12 Write §,9, 10,1T, @
Write 8,9, 10 =2 Jq 6 \ Ba[rleri Barrier M
Barrier grcn Write |3 X Write 2,4,5,6 - C)/M
Write | | Barrier ‘g,\{’"
-~
Barrier W Write 2,4,5,6 — e WQS
Write 4,2 — O {9

o grinds O
Ovloreh. e Yo Y v

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANCE GOAL

Motivation:

— Growing gap between sequential and[Fandom I/O performance

— RAID-5 especially bad with small random writes
—_—

pho 4

|dea: use disk purely sequentially

Design for writes to use disk sequentially — how?

\F
A

3 WHERE DO INODES GO?
Wy

A0

o

~ o

<
blk[0] :2(‘)/ /‘ |
L [@g{&«ﬁh

A0

7

LFS STRATEGY

File system buffers writes in main memory until “enough” data
— How much is enough?

— Enough to get good sequential bandwidth from disk (MB)

A
Write buffered data sequentially to new on disk 6 d\qﬁ
gorte v, M

Never overwrite old info: old copies left behind ?*O:HQQ/ X0

=

—

BUFFERED WRITES o \
W Lot ¥

a 'S
(P’Uj /} \,}"’c’
N M
Q
N
| 1 |
IS
\ Dia Dy Dy Dy glt gmg Do
AQ : A1 [A2 . A3 - @ InodelK]

WHAT ELSE IS DIFFERENT FROM FFS?
vaadd /L&

What data structures has LFS removed?
allocation structs: data + inode bitmaps Lok w? [\,LW(Q ,Frr /
How to do reads? — < R

Inodes are no longer at fixed offset onnj\/““‘!? p\ol& /jﬁ

tructure to map: — " 0(45» /7[

inode number => inode location on disk

IMAP EXPLAINED

blk[0]:A0
I

blk[0]:A0 [map[k]:A1

I[k] | imap

READING IN LFS

4

QQX;{ [k...k+N]:
A2

rf”ﬁ“ —F

imap

CR

(o

blk[0]:A0 |map[k]:A1
imap

0

A0

A1l A2

I Read the Checkpoint reglm,/? Ll’k 6\/ NWF ?

Kead all'imap parts,cache in mem
'3. To read a file:
. Lookup inode location in imap

o

2 Read inode
3. Read the f“le block

(¥ o K

b@\w@

pead. AL
veod A©

wdd s AO

[mol@qtﬁ‘/*”p(ﬂ/

GARBAGE COLLECTION

blk[0]:A0

blk[1]:A4
D1 | Ik

DO

ggggggggg

WHAT TO DO WITH OLD DATA?

Old versions of files = garbage

Approach |:garbage is a feature!
— Keep old versions in case user wants to revert files later
— Versioning file systems

— Example: Dropbox

Approach 2: garbage collection

GARBAGE COLLECTION

Need to reclaim space:
|.When no more references (any file system)

2. After newer copy is created (COWY file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

GARBAGE COLLECTION

60% 10% 95% 35%

disk segments:

GARBAGE COLLECTION

60% 10% 95% 35% 95%

U

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

GARBAGE COLLECTION MECHANISM

Is an inode the latest version?
— Check imap to see if this inode is pointed to
— Fast!
Is a data block the latest version?
— Scan ALL inodes to see if any point to this data
— Very slow!
How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data
block in segment (reverse pointers)

SEGMENT SUMMARY

-
blk[0]:AQ [map[k]:A1
D I[K] | imap

A0 A1

(N, T) = SegmentSummary[A];
inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact!?
* clean most empty first
* clean coldest (ones undergoing least change)

* more complex heuristics...

CRASH RECOVERY

What data needs to be recovered after a crash?
— Need imap (lost in volatile memory)
Better approach?

— Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
— Checkpoint often: random I/O
— Checkpoint rarely: lose more data, recovery takes longer

— Example: checkpoint every 30 secs

CRASH RECOVERY

. ptrs to
memory. imap pieces

checkpoint P i .-.
s« I ENEREE

after last
checkpoint

tail after last
checkpoint

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

disk:

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COWY file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: Distributed systems

Project 5 is out!

Discussion: Project 5 walkthrough

