
PERSISTENCE: JOURNALING, LFS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Out now. Last Project!

Discussion today: Project 5

AGENDA / LEARNING OUTCOMES

How to use journaling to maintain consistency during crashes?

How to design a filesystem that performs better for small writes?

RECAP

FS StructS

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

FS POINTERS: INODE, DIRECTORIES

S IB DB I I I I I
0 7
D D D D D D D D
16 23
D D D D D D D D
32 39
D D D D D D D D
48 55

FFS POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

How can file system fix Inconsistencies?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed
Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

Fsck Checks

Do superblocks match?
Is the list of free blocks correct?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Are there any bad block pointers?
Do directories contain “.” and “..”?
…

BUNNY 18

https://tinyurl.com/cs537-sp19-bunny18

BUNNY 18 https://tinyurl.com/cs537-sp19-bunny18

BUNNY 18

Consistency Solution #2: Journaling

Goals
–  Ok to do some recovery work after crash, but not to read entire disk
–  Don’t move file system to just any consistent state, get correct state

Atomicity
–  Definition of atomicity for concurrency: operations in critical sections are not

interrupted by operations on related critical sections
–  Definition of atomicity for persistence: collections of writes are not interrupted

by crashes; either (all new) or (all old) data is visible

Ordering FOR CONSISTENCY

transaction: write C to block 4; write T to block 6

write order

A

0 5

B

6 12111 2 3 4 7 8 9 10

Ordering FOR CONSISTENCY

write order
 9,10,11

12
4,6
12

Barriers
1) Before journal commit, ensure journal entries complete
2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete

A

0 5

B

6 12111 2 3 4 7 8 9 10

CHECKSUM OPTIMIZATION

A

0 5

B

6 12111 2 3 4 7 8 9 10

Can we get rid of barrier between (9, 10, 11) and 12 ?

In last transaction block, store checksum
of rest of transaction

During recovery: If checksum does not
match, treat as not valid

write order before
 9,10,11

12
4,6
12

OTHER OPTIMIZATIONS
Batched updates

 - If two files are created, inode bitmap, inode etc. get written twice
 - Mark as dirty in-memory and batch updates

Circular log

T4T3T2T1Journal:

0 128 MB

How to avoid writing all disk blocks Twice?

Observation: Most of writes are user data (esp sequential writes)

Strategy: journal all metadata, including
superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient.

METADATA JOURNALING

transaction: append to inode I

I’

0 5

B’ TxB B’ I’ TxE

6 12111 2 3 4 7 8 9 10

Crash !?!

Ordered Journaling

Still only journal metadata

But write data before the transaction!

Ordered Journal

What happens if crash now?
B indicates D currently free, I does not point to D;
Lose D, but that might be acceptable

I D

0 5

B

6 12111 2 3 4 7 8 9 10

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:

 Fix file system image after crash happens
 Too slow and only ensures consistency

Journaling

 Write a transaction before in-place updates
 Checksum, batching
 Ordered journal avoids data writes

BUNNY 19: IDENTIFY THE KIND OF JOURNALING

We need to write data in block 5,6. Inode is block 4, bitmap in block 2.
Journal is from blocks 8 to 15

Write 5,6
Write 8, 9, 10
Barrier
Write 11
Barrier
Write 4, 2

Write 8, 9, 10,11,12
Barrier
Write 13
Barrier
Write 2,4,5,6

Write 8, 9, 10,11,12, 13
Barrier
Write 2,4,5,6

https://tinyurl.com/cs537-sp19-bunny19

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

–  Growing gap between sequential and random I/O performance
–  RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

WHERE DO INODES GO?

LFS Strategy

File system buffers writes in main memory until “enough” data
–  How much is enough?
–  Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

BUFFERED WRITES

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

IMAP EXPLAINED

READING IN LFS

1.  Read the Checkpoint region
2.  Read all imap parts, cache in mem
3.  To read a file:

1.  Lookup inode location in imap
2.  Read inode
3.  Read the file block

GARBAGE COLLECTION

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!

–  Keep old versions in case user wants to revert files later
–  Versioning file systems
–  Example: Dropbox

Approach 2: garbage collection

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
 - Want future overwites to be to sequential areas
 - Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

Garbage Collection

General operation: �
Pick M segments, compact into N (where N < M).

Mechanism: �
How does LFS know whether data in segments is valid?

Policy: �
Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?
–  Check imap to see if this inode is pointed to
–  Fast!

Is a data block the latest version?
–  Scan ALL inodes to see if any point to this data
–  Very slow!

How to track information more efficiently?
–  Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

SEGMENT SUMMARY

(N,	T)	=	SegmentSummary[A];	
	
inode	=	Read(imap[N]);	
	
if	(inode[T]	==	A)	

	//	block	D	is	alive	
else	

	//	block	D	is	garbage	

Garbage Collection

General operation: �
Pick M segments, compact into N (where N < M).

Mechanism: �
Use segment summary, imap to determine liveness

Policy: �
Which segments to compact?

•  clean most empty first
•  clean coldest (ones undergoing least change)
•  more complex heuristics…

Crash Recovery

What data needs to be recovered after a crash?
–  Need imap (lost in volatile memory)

Better approach?
–  Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?

–  Checkpoint often: random I/O
–  Checkpoint rarely: lose more data, recovery takes longer
–  Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
 - read checkpoint to find most imap pointers and segment tail
 - find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses

 (usually in a place optimized for future reads)

LFS:

Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: Distributed systems

Project 5 is out!
Discussion: Project 5 walkthrough

