Persistence: RAID

Ram Alagappan CS 537, Spring 2019

Administrivia

P2b, midterm, P3 grades posted Midterm solutions available for regrades, see Piazza

P4 due on 4th, Thursday

Learning Outcomes

- Why more than one disk?
- What are the different RAID levels?
- (striping, mirroring, parity)
- How do we compare the RAID levels? What metrics?

Only One Disk?

Sometimes we may need many...Why?

1 Capacity 2 Performance 3 reliability

Challenge: most file systems work with one disk

Solution-I:JBOD

Just a Bunch Of Disks Applications store data on different FS e-g., Critical Application decides to replicate FS4 FS5 FS3 FS FS2 need to know multiple devices, Downsides: need to be rewritten, not deployable

Solution-2: RAID

Redundant Array of Inexpensive (Independent) Disks

Advantages: transparent to apps, deployable Improved capacity, performance, and reliability!

Fault Model

- Simple: fail-stop model
- Works correctly or fails entirely
- Easy to detect: system knows when not working No silent failures: no data corruption etc.,

General Strategy: Mapping

Build fast, large disk from smaller ones

Mapping

How should we map logical block addresses to physical block addresses?

Is this similar to something? virtual memory

Virtual memory - dynamic mapping: page tables RAID - Static mapping: simple calculation

General Strategy: Redundancy

Add even more disks for reliability

Redundancy

Trade-offs to amount of redundancy Increase number of copies improves reliability (and maybe performance) Decrease number of copies (deduplication) improves space efficiency

RAID Analysis

RAID: different levels Workload: types of reads/writes issued by app Metric: capacity, reliability, performance

Given Workload, Raid level, determine Metric

RAID Levels

- Levels 0 (striping) I (mirroring) 4 (parity)
- 5 (rotated parity)

2,3,6 we'll not discuss these

Metrics

Capacity: how much space can apps use? Reliability: how many disks can we safely lose?

Performance: latency? throughput?

Metrics

Normalize each to characteristics of one disk

N := number of disks

C := capacity of I disk

S := sequential throughput of I disk

R := random throughput of I disk

D := latency of one small I/O operation

Reasonable S? Reasonable R? How does S compare to R?

Assumptions.

 $C \sim 600 \text{ GB}$ $S \sim 100 \text{ MB/s}$ $R \sim 1-7 \text{ MB/s}$ $S \gg R$

RAID-0: Striping

Optimize for capacity; no redundancy!

4 Disks

	Disk 0	Disk I	Disk 2	Disk 3
	0	I	2	3
Stripe	4	5	6	7
	8	9	10	11
	12	13	14	15

How to Map?

Given logical address A, find:					
Disk = A % disk_count, Offset = A / disk_count					
Disk 0	Disk I	Disk 2	Disk 3	Ex. 10	
0	Ι	0 2	3	Disk # = 107.4	
4	5	6	7	= 2	
8	9	210		offset = 10/4	
12	13	14	15	「100 デク」 デク	

Chunk Size = I

Chunk Size = 2

We'll assume chunk size of I for today. Sizes of 64KB are typical in deployment.

RAID-0:Analysis Results

```
What is the capacity?
N*C upper found
How many disks can fail?
                         had
Throughput (sequential, random)?
N*S, N*R upper hours
Latency
```

buying more disks improves throughput, but not latency!

4 Disks					
Disk 0	Disk I	Disk 2	Disk 3		
0	0				
2	2	3	3		
4	4	5	5		
6	6	7	7		

RAID-I:Analysis What is the capacity? No. c [My half 2. c [effective Capacity] [44] How many disks can fail? $1 \int v sure$ $\frac{1}{2} \int v sure$ Latency (read, write)? are writes same as one disk? slower? faster? r: D, w: D(2 vaites but still only D, because we can do them in parallel)

RAID-I: Analysis Results

- What is the capacity? N/2 * C
- How many disks can fail? one (maybe N/2 if lucky) Latency (read, write)? read = D, write =D

RAID-I Throughput 010101 What is steady-state throughput for 2233 random reads? N.R MB/S 413155 random writes? N, R 7,2,0,1,3,4,5,6 2 0011 w (mirror 2233 of 7) 4415 Each logical write become 2 physical w(7)

RAID-I Throughput

RAID-I Throughput Results

What is steady-state throughput for random reads? N*R Same as raid-0

random writes? N/2 * R sequential writes? N/2 * S sequential reads? N/2 * S

capacity

RAID-4 Strategy

Stripe with parity

In algebra, if an equation has N variables, and N-I are known, you can often solve for the unknown

Treat sectors across disks in a stripe as an equation

Data on bad disk is like an unknown in the equation

XOR Parity

Disk 0	Disk I	Disk 2	Disk 3	Disk 4
0	I	2	3	P0
4	5	6	7	PI
8	9	10		P2
12	13	14	15	P3

P0 = contents of 0 xor contents of 1 xor contents of 2 xor contents of 3

•

Updating Parity on Writes White (8) Sold -> 8 new 0 1 2 P Ex: Approach 1: read 6,7, we have grew 345 1 67图图 Prew = 6 7 7 8 new 91011 P Approach 2 : read Sold, Pold; calc Pnew if 8 new == Pold. Pnew = Pold Latency (write)? else Inow = (Pold)

RAID-4 Analysis Results

What is the capacity? (N-I) * C How many disks can fail? one Latency (read, write)? D, 2D

RAID-4 Throughput

RAID-4 Throughput

What is steady-state throughput for – random reads? $(N - 1) \cdot R \cdot$

random writes? R (mis is very 2 bad!) random write perf. in RAID-4 is bottlenecked by me parity dist

78 P 9 10 IN P

RAID-4 Small-write Problem

Performance of random writes? R_2 (whice : ho) N!

RAID-4 Throughput Results

What is steady-state throughput for – sequential reads? (N-I) * S sequential writes? (N-I) * S random reads? (N-I) * R random writes? R/2

RAID-5: Rotated Parity

RAID-5 Analysis

What is the capacity? How many disks can fail? Latency (read, write)?

RAID-5 Analysis Results

What is the capacity? (N-I) * C How many disks can fail? one Latency (read, write)? D, 2D

RAID-5 Throughput

What is steady-state throughput for – sequential reads? sequential writes? random reads? random writes?

RAID-5 Throughput Results

What is steady-state throughput for – sequential reads? (N-I) * S sequential writes? (N-I) * S random reads? (N) * R random writes? N/4 * R

RAID Summary

	Reliability	Capacity
RAID-0	0	C*N
RAID-I		C*N/2
RAID-4		C*(N-1)
RAID-5		C*(N-1)

RAID Summary

	Read latency	Write latency
RAID-0	D	D
RAID-I	D	D
RAID-4	D	2D
RAID-5	D	2D

RAID Summary

	Seq read	Seq write	Rand read	Rand write
RAID-0	N*S	N*S	N*R	N*R
RAID-I	N/2 * S	N/2 * S	N*R	N/2 * R
RAID-4	(N-I)*S	(N-I)*S	(N-I)*R	R/2
RAID-5	(N-I)*S	(N-I)*S	N*R	N/4*R

RAID-0 is always fastest and has best capacity (but at cost of reliability)

RAID-5 is strictly better than RAID-4

RAID-5 better than RAID-1 for sequential

RAID-I better than RAID-4 for random write

Summary

RAID: a faster, larger, more reliable disk system One logical disk built from many physical disk Different mapping and redundancy schemes Present different trade-offs