
CONCURRENCY: SEMAPHORES, DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 3 is due Monday 3/11

-  Midterm is next Wednesday 3/13 at 5.15pm, details on Piazza
-  Discussion: Midterm review, Q&A

-  Fill out mid semester course evaluation https://aefis.wisc.edu/

AGENDA / LEARNING OUTCOMES

Concurrency abstractions
 How to implement semaphores?
 What are common pitfalls with concurrent execution?

RECAP

Concurrency Objectives

Mutual exclusion (e.g., A and B don’t run at same time)
 solved with locks

Ordering (e.g., B runs after A does something)

 solved with condition variables and semaphores

SUMMARY: CONDITION VARIABLES

wait(cond_t *cv, mutex_t *lock)
 - assumes the lock is held when wait() is called
 - puts caller to sleep + releases the lock (atomically)

 - when awoken, reacquires lock before returning

signal(cond_t *cv)

 - wake a single waiting thread (if >= 1 thread is waiting)

 - if there is no waiting thread, just return, doing nothing

Summary: rules of thumb for CVs

1. Keep state in addition to CV’s

2. Always do wait/signal with lock held

3. Whenever thread wakes from waiting, recheck state

Semaphore Operations
Allocate and Initialize

sem_t	sem;	
sem_init(sem_t	*s,	int	initval)	{		

s->value	=	initval;	
}	
User cannot read or write value directly after initialization

Wait or Test (sometime P() for Dutch) sem_wait(sem_t*)
Decrements sem value, Waits until value of sem is >= 0

Signal or Post (sometime V() for Dutch) sem_post(sem_t*)
Increment sem value, then wake a single waiter

PRODUCER CONSUMER: EXAMPLE PIPES

A pipe may have many writers and readers

Internally, there is a finite-sized buffer

Writers add data to the buffer

 - Writers have to wait if buffer is full

Readers remove data from the buffer

 - Readers have to wait if buffer is empty

Producer/Consumer: Semaphores #1

Single producer thread, single consumer thread
Single shared buffer between producer and consumer

Use 2 semaphores

–  emptyBuffer: Initialize to ________
–  fullBuffer: Initialize to __________

Producer	

while	(1)	{		

	sem_wait(&emptyBuffer); 	
	Fill(&buffer);	

	sem_signal(&fullBuffer);	

}	

Consumer	

while	(1)	{	

	sem_wait(&fullBuffer);
	Use(&buffer);	

	sem_signal(&emptyBuffer);	

}	

Producer/Consumer: Semaphores #2

Single producer thread, single consumer thread
Shared buffer with N elements between producer and consumer
Use 2 semaphores

–  emptyBuffer: Initialize to ___________
–  fullBuffer: Initialize to ____________

Producer	
i	=	0;	
while	(1)	{		

	sem_wait(&emptyBuffer); 	 		
	Fill(&buffer[i]);	
	i	=	(i+1)%N;	
	sem_signal(&fullBuffer);	

}	

Consumer	
j	=	0;	
While	(1)	{	

	sem_wait(&fullBuffer); 	 		
	Use(&buffer[j]);	
	j	=	(j+1)%N;	
	sem_signal(&emptyBuffer);	

}	

Producer/Consumer: Semaphore #3

Final case:
–  Multiple producer threads, multiple consumer threads
–  Shared buffer with N elements between producer and consumer

Requirements
–  Each consumer must grab unique filled element
–  Each producer must grab unique empty element
–  Why will previous code (shown below) not work???

Producer/Consumer: Multiple Threads

Producer	
while	(1)	{		

	sem_wait(&emptyBuffer);	
	my_i	=	findempty(&buffer); 		
	Fill(&buffer[my_i]);	
	sem_signal(&fullBuffer);	

}	

Consumer	
while	(1)	{	

	sem_wait(&fullBuffer);	
	my_j	=	findfull(&buffer);	
	Use(&buffer[my_j]);	
	sem_signal(&emptyBuffer);	

}	

Are my_i and my_j private or shared? Where is mutual exclusion needed???

Producer/Consumer: Multiple Threads

Does this work?

Producer	#1	
	sem_wait(&mutex); 		
	sem_wait(&emptyBuffer);	
	my_i	=	findempty(&buffer); 		
	Fill(&buffer[my_i]);	
	sem_signal(&fullBuffer);	
	sem_signal(&mutex);		

Consumer	#1	
	sem_wait(&mutex);	
	sem_wait(&fullBuffer);	
	my_j	=	findfull(&buffer); 		
	Use(&buffer[my_j]);	
	sem_signal(&emptyBuffer);	
	sem_signal(&mutex);	

Producer/Consumer: Multiple Threads

Consumer	#2	
	sem_wait(&fullBuffer);	
	sem_wait(&mutex);	
	myj	=	findfull(&buffer);	 		
	Use(&buffer[myj]);	
	sem_signal(&mutex);	
	sem_signal(&emptyBuffer);	

Producer	#2	
	sem_wait(&emptyBuffer);	
	sem_wait(&mutex); 		
	myi	=	findempty(&buffer); 		
	Fill(&buffer[myi]);	
	sem_signal(&mutex);		
	sem_signal(&fullBuffer);	

Works, but limits concurrency:
Only 1 thread at a time can be using or filling different buffers

Producer/Consumer: Multiple Threads

Consumer	#3	
	sem_wait(&fullBuffer);	
	sem_wait(&mutex);	
	myj	=	findfull(&buffer);	
	sem_signal(&mutex); 	 		
	Use(&buffer[myj]);	
	sem_signal(&emptyBuffer);	

Producer	#3	
	sem_wait(&emptyBuffer);	
	sem_wait(&mutex); 		
	myi	=	findempty(&buffer); 		
	sem_signal(&mutex);		
	Fill(&buffer[myi]);	
	sem_signal(&fullBuffer);	

Works and increases concurrency; only finding a buffer is protected by mutex;
Filling or Using different buffers can proceed concurrently

Reader/Writer Locks

Let multiple reader threads grab lock (shared)
Only one writer thread can grab lock (exclusive)

–  No reader threads
–  No other writer threads

Let us see if we can understand code

Reader/Writer Locks

1	typedef	struct	_rwlock_t	{		
2	 			sem_t	lock;		
3 			sem_t	writelock;		
4	 			int	readers;		
5	}	rwlock_t;		
6		
7	void	rwlock_init(rwlock_t	*rw)	{	
8	 			rw->readers	=	0;		
9	 			sem_init(&rw->lock,	1);		
10				sem_init(&rw->writelock,	1);		
11	}	
	

Reader/Writer Locks
13	void	rwlock_acquire_readlock(rwlock_t	*rw)	{		
14		 	sem_wait(&rw->lock);		
15		 	rw->readers++;		
16		 	if	(rw->readers	==	1)		
17		 					sem_wait(&rw->writelock);		
18		 	sem_post(&rw->lock);		
19	}		
21	void	rwlock_release_readlock(rwlock_t	*rw)	{		
22		 	sem_wait(&rw->lock);		
23		 	rw->readers--;		
24		 	if	(rw->readers	==	0)		
25		 					sem_post(&rw->writelock);	
26		 	sem_post(&rw->lock);		
27	}		
29	rwlock_acquire_writelock(rwlock_t	*rw)	{		sem_wait(&rw->writelock);	}	
31	rwlock_release_writelock(rwlock_t	*rw)	{	sem_post(&rw->writelock);	}	
	

BUNNY

https://tinyurl.com/cs537-sp19-bunny8

READER WRITER LOCKS

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()

What is the status of T2 ?

T6: acquire_writelock()
T4: acquire_readlock()
T5: acquire_readlock()

What is the status of T4?

Build Semaphore from Lock and CV

Typedef	struct	{	
	int	value;	
	cond_t	cond;	
	lock_t	lock;	

}	sem_t;	
	
void	sem_init(sem_t	*s,	int	value)	{	

	s->value	=	value;	
	cond_init(&s->cond);	
	lock_init(&s->lock);	

}	
	

Locks

Semaphores

CV’s

sem_wait(): Decrement and waits until value >= 0
sem_post(): Increment value, then wake a single waiter

Build Semaphore from Lock and CV

sem_wait(sem_t	*s)	{	
	lock_acquire(&s->lock);	
	s->value--;	
	while	(s->value	<	0)	
	 	cond_wait(&s->cond);	
	lock_release(&s->lock);	

}	
	

sem_post(sem_t	*s)	{	
	lock_acquire(&s->lock);	
	s->value++;	
	cond_signal(&s->cond);	
	lock_release(&s->lock);	

}	
	

Locks

Semaphores

CV’ssem_wait(): Decrement and waits until value >= 0
sem_post(): Increment value, then wake a single waiter

SUMMARY: Semaphores

Semaphores are equivalent to locks + condition variables
–  Can be used for both mutual exclusion and ordering

Semaphores contain state
–  How they are initialized depends on how they will be used
–  Init to 0: Join (1 thread must arrive first, then other)
–  Init to N: Number of available resources

sem_wait(): Decrement and waits until value >= 0
sem_post(): Increment value, then wake a single waiter (atomic)
Can use semaphores in producer/consumer and for reader/writer locks

CONCURRENCY BUGS

Concurrency in Medicine: Therac-25 (1980’s)

“The accidents occurred when the high-power electron beam was activated
instead of the intended low power beam, and without the beam spreader plate
rotated into place. Previous models had hardware interlocks in place to prevent
this, but Therac-25 had removed them, depending instead on software interlocks
for safety. The software interlock could fail due to a race condition.”

“…in three cases, the injured patients later died.”

Source: http://en.wikipedia.org/wiki/Therac-25

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug

s

Atomicity Order Deadlock Other

Concurrency Study

Atomicity: MySQL

Thread 1:!
if (thd->proc_info) { !
 … !
 fputs(thd->proc_info, …); !
 … !
} !

What’s wrong?

Thread 2: !
!
thd->proc_info = NULL; !

Fix Atomicity Bugs with Locks

Thread 1:!
pthread_mutex_lock(&lock); !
if (thd->proc_info) { !
 … !
 fputs(thd->proc_info, …); !
 … !
} !
pthread_mutex_unlock(&lock); !

Thread 2: !
!
pthread_mutex_lock(&lock); !
thd->proc_info = NULL; !
pthread_mutex_unlock(&lock); !

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug

s

Atomicity Order Deadlock Other

Concurrency Study

Ordering: Mozilla
Thread	1:	
	
void	init()	{	
		…	
		mThread	=		
				PR_CreateThread(mMain,	…);	
		…	
}	

Thread 2:!
!
void mMain(…) { !
 …!
!
 mState = mThread->State;!
!
 … !
} !

What’s wrong?

Fix Ordering bugs with Condition variables

Thread	2:	
	
void	mMain(…)	{	
		…	
	
		mutex_lock(&mtLock);	
		while	(mtInit	==	0)	
				Cond_wait(&mtCond,	&mtLock);	
		Mutex_unlock(&mtLock);	
	
		mState	=	mThread->State;	
		…	
}	

Thread	1:	
void	init()	{	

	…	
	

	mThread	=			 			 			 			 						 	
	PR_CreateThread(mMain,	…);	

	 		
	pthread_mutex_lock(&mtLock);	

		 	mtInit	=	1;	
		 	pthread_cond_signal(&mtCond);	
		 	pthread_mutex_unlock(&mtLock);	
			

	…	
}	

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug

s

Atomicity Order Deadlock Other

Concurrency Study

Deadlock
No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

Code Example

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

Fix Deadlocked Code

Thread	2	
	

Thread	1	
	

Thread	2:	
	
lock(&B);	
lock(&A);	

Thread	1:	
	
lock(&A);	
lock(&B);	

Non-circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

set_t	*set_intersection	(set_t	*s1,	set_t	*s2)	{	
	set_t	*rv	=	malloc(sizeof(*rv));	
	mutex_lock(&s1->lock);	
	mutex_lock(&s2->lock);	
	for(int	i=0;	i<s1->len;	i++)	{	
	 	if(set_contains(s2,	s1->items[i])	
	 	 	set_add(rv,	s1->items[i]);	
	mutex_unlock(&s2->lock);	
	mutex_unlock(&s1->lock);	

}	

Thread	1:	rv	=	set_intersection(setA,	setB);	

Thread	2:	rv	=	set_intersection(setB,	setA);	

Encapsulation
Modularity can make it harder to see deadlocks

Solution?

if	(m1	>	m2)	{		
	//	grab	locks	in	high-to-low	address	order	
	pthread_mutex_lock(m1);		
	pthread_mutex_lock(m2);		

}	else	{		
	pthread_mutex_lock(m2);		
	pthread_mutex_lock(m1);		

}	

Any other problems?

Deadlock Theory

Deadlocks can only happen with these four conditions:
 1. mutual exclusion
 2. hold-and-wait
 3. no preemption
 4. circular wait

Can eliminate deadlock by eliminating any one condition

1. Mutual Exclusion

Problem: Threads claim exclusive control of resources that they require
Strategy: Eliminate locks!

Try to replace locks with atomic primitive:
	
	int	CompAndSwap(int	*addr,	int	expected,	int	new)	
	Returns	0	fail,	1	success	

BUNNY

void	add	(int	*val,	int	amt)	{	
	do	{	
	 	int	old	=	*value;	
	}	while(!CompAndSwap(val,	___,	old+amt);	

}	

void	add	(int	*val,	int	amt)	
{	

	Mutex_lock(&m);	
	*val	+=	amt;	
	Mutex_unlock(&m);	

}	

Wait-Free Algorithm: Linked List Insert

void	insert	(int	val)	{	
	node_t	*n	=	Malloc(sizeof(*n));	
	n->val	=	val;	
	lock(&m);	
	n->next	=	head;	
	head	=	n;	
	unlock(&m);	

}	

void	insert	(int	val)	{	
	node_t	*n	=	Malloc(sizeof(*n));	
	n->val	=	val;	
	do	{	
	 	n->next	=	head;	
	}	while	(!CompAndSwap(&head,		

																				n->next,	n));	
}	

2. Hold-and-Wait
Problem: Threads hold resources allocated to them while waiting for additional
resources
Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been released
How to do this? Use a meta lock:

Disadvantages?

3. No preemption

Problem: Resources (e.g., locks) cannot be forcibly removed from threads that are
Strategy: if thread can’t get what it wants, release what it holds

top:	

	lock(A);	
	if	(trylock(B)	==	-1)	{	
	 	unlock(A);	
	 	goto	top;	
	}	
	…	

Disadvantages?

4. Circular Wait

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
 - decide which locks should be acquired before others
 - if A before B, never acquire A if B is already held!
 - document this, and write code accordingly

Works well if system has distinct layers

NEXT STEPS

Project 3: Out now!
Midterm details posted

Next class: Midterm review

