
CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 2b is out. Due Feb 27th, 11:59
-  Project 2a grading in progress

Discussion:

 Makefile tutorial
 How to return values from a syscall

AGENDA / LEARNING OUTCOMES

Virtual memory: Summary
Concurrency

 What is the motivation for concurrent execution?
 What are some of the challenges?

RECAP

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

–  Slower, cheaper backing store than memory
Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

–  Same behavior as if all of address space in main memory

Requirements:

–  OS must have mechanism to identify location of each page in address
space à in memory or on disk

–  OS must have policy for determining which pages live in memory and
which on disk

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

–  if TLB hit, address translation is done; page in physical memory
Else TLB miss...

–  Hardware or OS walk page tables
–  If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

–  Trap into OS (not handled by hardware)
–  OS selects victim page in memory to replace

•  Write victim page out to disk if modified (add dirty bit to PTE)
–  OS reads referenced page from disk into memory
–  Page table is updated, present bit is set
–  Process continues execution

Page Selection
Demand paging: Load page only when page fault occurs

–  Intuition: Wait until page must absolutely be in memory
–  When process starts: No pages are loaded in memory
–  Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
–  OS predicts future accesses (oracle) and brings pages into memory early
–  Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references

–  User specifies: may need page in future, don’t need this page anymore, or
sequential access pattern, ...

–  Example: madvise() in Unix

https://tinyurl.com/cs537-sp19-bunny2

Page Replacement Example
Page reference string: ABCABDADBCB

OPT FIFO LRU
ABC

B
D

A

D

B

C
B

A

Three pages
of physical
memory

Metric:
Miss count

Implementing LRU
Software Perfect LRU

–  OS maintains ordered list of physical pages by reference time
–  When page is referenced: Move page to front of list
–  When need victim: Pick page at back of list
–  Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
–  Associate timestamp register with each page
–  When page is referenced: Store system clock in register
–  When need victim: Scan through registers to find oldest clock
–  Trade-off: Fast on memory reference, slow on replacement (especially as size of

memory grows)
In practice, do not implement Perfect LRU

–  LRU is an approximation anyway, so approximate more
–  Goal: Find an old page, but not necessarily the very oldest

Clock Algorithm
Hardware

–  Keep use (or reference) bit for each page frame
–  When page is referenced: set use bit

Operating System
–  Page replacement: Look for page with use bit cleared �

(has not been referenced for awhile)
–  Implementation:

•  Keep pointer to last examined page frame
•  Traverse pages in circular buffer
•  Clear use bits as search
•  Stop when find page with already cleared use bit, replace this page

Clock: Look For a Page

0 1 2 3 … Physical Mem:

Use= Use= Use= Use=

clock hand

SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation

 - Contiguous memory: base, bounds, segmentation
 - Using fixed sizes pages with page tables

Challenges with paging
 - Extra memory references: avoid with TLB
 - Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

Review: Easy Piece 1

Virtualization

CPU

Memory

Context Switch

Schedulers

Segmentation

Paging

TLBs

Multilevel
Swapping

Allocation

CONCURRENCY

Motivation for Concurrency

Motivation
CPU Trend: Same speed, but multiple cores
Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
–  Example: Chrome (process per tab)
–  Communicate via pipe() or similar

Pros?
–  Don’t need new abstractions; good for security

Cons?
–  Cumbersome programming
–  High communication overheads
–  Expensive context switching (why expensive?)

CONCURRENCY: Option 2

New abstraction: thread

Threads are like processes, except:

 multiple threads of same process share an address space

Divide large task across several cooperative threads
Communicate through shared address space

Common Programming Models

Multi-threaded programs tend to be structured as:

–  Producer/consumer
Multiple producer threads create data (or work) that is handled by one of
the multiple consumer threads

–  Pipeline
Task is divided into series of subtasks, each of which is handled in series by
a different thread

–  Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?

THREAD VS. Process

Multiple threads within a single process share:
–  Process ID (PID)
–  Address space: Code (instructions), Most data (heap)
–  Open file descriptors
–  Current working directory
–  User and group id

Each thread has its own
–  Thread ID (TID)
–  Set of registers, including Program counter and Stack pointer
–  Stack for local variables and return addresses

(in same address space)

OS Support: Approach 1
User-level threads: Many-to-one thread mapping

–  Implemented by user-level runtime libraries
 Create, schedule, synchronize threads at user-level
–  OS is not aware of user-level threads
 OS thinks each process contains only a single thread of control

Advantages
–  Does not require OS support; Portable
–  Can tune scheduling policy to meet application demands
–  Lower overhead thread operations since no system call

Disadvantages?
–  Cannot leverage multiprocessors
–  Entire process blocks when one thread blocks

OS Support: Approach 2
Kernel-level threads: One-to-one thread mapping
–  OS provides each user-level thread with a kernel thread
–  Each kernel thread scheduled independently
–  Thread operations (creation, scheduling, synchronization) performed by OS

Advantages
–  Each kernel-level thread can run in parallel on a multiprocessor
–  When one thread blocks, other threads from process can be scheduled

Disadvantages
–  Higher overhead for thread operations
–  OS must scale well with increasing number of threads

THREADS DEMO

Thread Schedule #1

•  0x195 mov 0x9cd4, %eax !
•  0x19a add $0x1, %eax !
•  0x19d mov %eax, 0x9cd4 !

Thread 1 Thread 2

%eax:
%rip:

State: !
0x9cd4: 100 !
%eax: !
%rip = 0x195 !

thread
control
blocks:

%eax:
%rip:

balance = balance + 1; balance at 0x9cd4

Thread Schedule #2

•  0x195 mov 0x9cd4, %eax !
•  0x19a add $0x1, %eax !
•  0x19d mov %eax, 0x9cd4 !

Thread 1 Thread 2

%eax:
%rip:

State: !
0x9cd4: 100 !
%eax: !
%rip = 0x195 !

thread
control
blocks:

%eax:
%rip:

balance = balance + 1; balance at 0x9cd4

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

BUNNY

tinyurl.com/cs537-sp19-bunny3

Non-Determinism

Concurrency leads to non-deterministic results
–  Different results even with same inputs
–  race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov	0x123,	%eax	
add	%0x1,	%eax	
mov	%eax,	0x123	

More general: Need mutual exclusion for critical sections
 if thread A is in critical section C, thread B isn’t
 (okay if other threads do unrelated work)

Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads
Stores

Test&Set
Disable Interrupts

CONCURRENCY SUMMARY

Concurrency is needed for high performance when using multiple cores

Threads are multiple execution streams within a single process or address
space (share PID and address space, own registers and stack)

Context switches within a critical section can lead to non-deterministic bugs

Locks
Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
–  Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
–  Acquire exclusion access to lock;
–  Wait if lock is not available (some other process in critical section)
–  Spin or block (relinquish CPU) while waiting
–  Pthread_mutex_lock(&mylock);

Release
–  Release exclusive access to lock; let another process enter critical section
–  Pthread_mutex_unlock(&mylock);

THREADS DEMO2

NEXT STEPS

Project 2b: Out now

Next class: How to implement locks?
Discussion:

 Makefile tutorial
 How to return values from a syscall

