CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

- Project 2b is out. Due Feb 27%, 11:59
- Project 2a grading in progress

Discussion:
Makefile tutorial

How to return values from a syscall

AGENDA / LEARNING OUTCOMES

Virtual memory: Summary
Concurrency
What is the motivation for concurrent execution?

What are some of the challenges!?

RECAP

SWAPPING INTUITION

|dea: OS keeps unreferenced pages on disk
— Slower, cheaper backing store than memory
Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory
— Same behavior as if all of address space in main memory

Requirements:

— OS must have mechanism to identify location of each page in address
space = in memory or on disk

— OS must have policy for determining which pages live in memory and
which on disk

VIRTUAL MEMORY MECHANISMS

First, hardware checks TLB for virtual address

Else

Else

if TLB hit)address translation is done; page in physical memory

(
Hardware or(OS walk page tables \ |
If PTE designates page is present, then page in physical memory

(i.e.;present bit/is cleared))
Trap into OS (not handled by hardware)
OS selects victim page in memory to replace
* Write victim page out to disk if modified (add dirty bit to PTE)
OS reads referenced page from disk into memory
Page table is updated, present bit is set

Process continues execution

-~ PAGE SELECTION
W o
o e
emand paglr:% Load page only when page fault occurs > Y
— Intuition:Wait until page must absolutely be in memory \,1\5(
— When process starts: No pages are loaded in memory
- Problems@_a)' cost of page faui'gfor every newly accessed page
Prepaging (anticipatory, prefetching): Load page before referenced
— OS predicts future accesses (oracle) and brings pages into memory early
— Works well for some access patterns (e.g./sequential)

r 4
w\ C
1)

Hints: Combine above with user-supplied hints about page references

— User specifies: may need page in future, don’t need this page anymore, or
sequential access pattern, ...

— Example: madvise() in Unix

-

https://tinyurl.com/cs537-sp | 9-bunny2

PAGE REPLACEMENT EXAMPLE

Page reference string; ABCABDADBCB
' OPT FIFO | LRU

Metric; ABC

Miss count

Three pages
of physical
memory

WO @ U > O o>

IMPLEMENTING LRU

— OS maintains ordered list of physical pages by reference time 4

— When page is referenced: Move page to front of list U\,

— When need victim: Pick page at back of list o

— Trade-off: Slow on memory reference, fast on replacement
Hardware Perfect LRU

— Associate timestamp register with each page

— When page is referenced: Store system clock in register

— When need victim: Scan through registers to find oldest clock

— Trade-off: Fast on memory reference, slow on replacement (espeaally as size of
memory grows)

In practice, do not implement Perfect LRU
— LRU is an approximation anyway, so approximate more
— Goal: Find an old page, but not necessarily the very oldest

CLOCK ALGORITHM |

Hardware
— Keep use (or reference) bit for each page frame °
— When page is referenced: set use bit

Operating System
— Page replacement: Look for page with use bit cleared
(has not been referenced for awhile)
— Implementation:
* Keep pointer to last examined page frame
* Traverse pages in circular buffer
* Clear use bits as search
* Stop when find page with already cleared use bit, replace this page

CLOCK: LOOK FOR A PAGE

J o
"
Us =/\/ Use=0) Use=| |Use= (

Physical Mem: O | 2 3

!) 5
} ¢ Clockfhand _AJA& f ML a"cdl’ ©
o X | Ly ¥ cflm/
SRR LI - /K’ﬁ
> @[\U% | | k W !

SUMMARY: VIRTUAL MEMORY

Abstraction:Virtual address space with code, heap, stack .
Address translation

- Contiguous memory: base, bounds, segmentation

- Using fixed sizes page; with paggftables
Challenges with paging ' _

- Extra memory references: avoid with TLB

- Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

REVIEW: EASY PIECE 1

Context Switch
CPU =

/ T Schedulers

Virtualization Allocation

\M 4 Segmentation TLBs ~
emory — Multilevel ~
— Paging

—> Swapping .~

CONGURRENGY

MOTIVATION FOR CONCURRENCY _cmmsmmgussc

Performance (vs. VAX-11/780)

Intel Xeon 4 cores 3.7 GHz (Boost to 4

100,000

10,000 A

1000 -

8

10 -+

-- AMD Athlon 64, 2.8 GHz -

................................... Digital AiphaServer 8400 6/575. 575 MHz 21264 e

.............................. A

T Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0 GHz)
J < (g ’) Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
- .\ N Intel Core 17 4 cores 3.4 GHz (boost 10 3.8 GHz)

(A
b S Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
(v ngp v A(WH o Intel Xeon 4 cores, 3.3 GHz (boost o 3.6 GHz)
I Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
A?p Intel Core Duo Extreme 2 cores, 3.0 GHz 21,87
Intel Core 2 Extreme 2 cores, 29GHz o _—@—9_-- &
AMD Athlon, 2.6 GHz
Intel Xeon EE 3.2 GHz
Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) e,uf' o
IBM Powerd, 1.3 GHz &= 4,195
Intel VIC820 motherboard, 1.0 GHz Pentium Il processor 1‘":”"
Professional Workstation XP1000, 667 MHz 21264A '

-

AlphaServer 4000 5/600, 600 MHz 21164 'b‘“
Digital Alphastation 5500, 500 MHz ‘3'8'1

Digital Alphastation 4/266, 266 MHz @7 23%lyear
I1BM POWERstation 100, 150 MHz "_'_{17_ _______________________________

N

Digital 3000 AXP/500, 150 MHz 8"
HP 9000/750, 68 MHz g .~
o" ‘
IBM RSB000/540, 30 MHz, .47 74 52%/year

MIPS M2000, 25 MHz 18

MIPS W120, 16.7 MHz 13

Sun-4/260, 16.7 MHz -5
VAX 8700, 22 MHz 5

25%lyear

1 M T 1 Ll L Ll T 1 1 T Ll 1 1 U Ll T 1
978 1980\1982/1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

MOTIVATION

CPU Trend: Same speed, but multiple cores
Goal:Write applications that fully utilize many cores
Option |:Build apps from many communicating'processes |
— Example: Chrome (process per tab)
— Communicate via pipe() or similar
Pros!?
— Don’t need new abstractions; good for security
Cons!?
— Cumbersome programming
— High communication overheads

— Expensive context switching (why expensive?)

CONGURRENGY: OPTION 2

New abstraction: thread y T '

Threads are like processes, except:

multiple threads of same process share an address space

Divide large task across several cooperative threads

Communicate through shared address space

-

'

~#GOMMON PROGRAMMING MODELS

£y

Multi-threaded programs tend to be structured as:

~-

— Producer/consumer ‘
Multiple producer threads create data (or work) that is handled by one of

the multiple consumer threads

—/ Pipeline
Task is divided into series of subtasks, each of which is handled in series by
a different thread

— Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)

| .“ ‘,’- ' l }

N\

running running

thread I@ thread 2
v Tyt

e DY

P

CPU | CPU 2 RAM
I'_, qu{aﬂh’(&

What state do threads share?

fage
/LMW‘L xO"f\ 5? /‘)(QJ

L‘T@WM{% pwac tobies 7

Qe

Qﬁ\dtfe/a/(

CPU | CPU 2 RAM

running running
thread | thread 2

What state do threads share?

2 Y, ,.f‘:ﬁ

| }SWL] [srace
(oo Aaym@v\k — /%\ﬂﬁ(’/l
g’adi 7, | -

THREAD VS. PROCESS

Multiple threads within a single process share:
— Process_ID (PID)
— Address space: Code (instructions), Most data (heap)
— Open file descriptors
— Current working directory
— User and group id
Each thread has its own
— Thread ID (TID)
— Set of registers, including Program counter and Stack pointer.

— Stack for local variables and return addresses
(in same address space)

0S SUPPORT: APPROACH 1 |

Une”
User-level threads: Many-to-one thread mapping il

— Implemented by user-level runtime libraries
Create, schedule, synchronize threads at user-level /Q”“J
— OS is not aware of user-level threads .
OS thinks each process contains only a single thread of control ol
Advantages
— Does not require OS support; Portable
— Can tune scheduling policy to meet application demands W 7
— Lower overhead thread operations since no system call J({[JY
Disadvantages!? DLy
— Cannot leverage multiprocessors —= VMB’“M’“‘“ 7 MOO(?J(
— Entire process blocks when one thread blocks

L

0S SUPPORT: APPROACH 2)

oo

Kernel-level threads: One-to-one thread mapping
— OS provides each user-level thread with a kernel thread Ko el
— Each kernel thread scheduled independently
— Thread operations (creation, scheduling, synchronization) performed by OS
Advantages
— Each kernel-level thread can run in parallel on a multiprocessor

— When one thread blocks, other threads from process can be scheduled

Disadvantages A f—/;l&/
— Higher overhead for thread operatior%//wkwj /&g r(w\ryj{ /@
W

— OS must scale well with increasing number of threads

W (
oy

THREADS DEMO

THREAD SCHEDULE #1

balance = balance + 1;)balance at 0x9cd4

State: 19l= o) Thread | Thread 2
0x9cd4.: %@@Q\ it %eax: €
oeax: control %rip: ©
%rip = 0x195 blocks:

////\ « 0x195 mov 0x9cd4,\ %eax
\ 0x19a add $0x1, %eax &

0x19d mov %eax, 0x9cd4

THREAD SCHEDULE #2

balance = balance + 1; balance at 0x9cd4

State: [0
0x9cd4: 10
%eax:

Srip = 0x1

Thread | ~ ~Thread 2

%eax

Wd
o\ control
95 blocks:
0x195 mov 0x9cd4, %eax
0x19a add $0x1,
0x19d mov %eax,

0x9cd4

e %

(orde, X Sb?ﬁ}k@(/r?/
g Ad

OV

TIMELINE VIEW

Thread | Thread 2
mov 0x123, %eax |V

add %0x|, %eax

mov %eax, 0x 123

mov 0x 123, %eax
add %0x2, %eax

mov %eax, 0x 123

\/@vﬂ’&b

NON-DETERMINISM

Concurrency leads to non-deterministic results
— Different results even with same inputs
— race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!

WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

mov O0x123, %eax
add %0x1, %eax
mov %eax, ©0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)

SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors
Locks Semaphores

Condition Variables

Loads Test&Set

Stores
Disable Interrupts

CONCURRENCY SUMMARY

Concurrency is needed for high performance when using multiple cores

Threads are multiple execution streams within a single process or address
space (share PID and address space, own registers and stack)

Context switches within a critical section can lead to non-deterministic bugs

LOCKS

Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
— Pthread mutex_t mylock = PTHREAD_ MUTEX_INITIALIZER;
Acquire
— Acquire exclusion access to lock;
— Wit if lock is not available (some other process in critical section)
— Spin or block (relinquish CPU) while waiting
— Pthread mutex_lock(&mylock);
Release
— Release exclusive access to lock; let another process enter critical section
— Pthread mutex_unlock(&mylock);

THREADS DEMOZ

NEXT STEPS

Project 2b: Out now

Next class: How to implement locks?
Discussion:
Makefile tutorial

How to return values from a syscall

