
MEMORY: SMALLER PAGETABLES

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 2a is due Friday
-  Project 1b grades this week

-  Midterm makeup
-  Discussion today: xv6 scheduler walk through

OFFICE HOURS?

OFFICE HOURS?

OFFICE HOURS

1.  One question per student at a time
2.  Please be prepared before asking questions.
3.  The TAs might not be able to fix your problem
4.  Up to 10 mins per student.

Search Piazza?
Discussion section: Using gdb
Extra office hours in the afternoon and evening tomorrow till 8pm!

AGENDA / LEARNING OUTCOMES

Memory virtualization
 How we reduce the size of page tables?
 What can we do to handle large address spaces?

RECAP

PAGING TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory

Disadvantages of Paging
Additional memory reference to page table à Very inefficient

–  Page table must be stored in memory
–  MMU stores only base address of page table

Storage for page tables may be substantial
–  Simple page table: Requires PTE for all pages in address space
 Entry needed even if page not allocated ?

Strategy: Cache Page Translations

CPU RAM

memory interconnect

PT
Translation Cache

PAGING TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. check TLB for VPN
 if miss:

 3. calculate addr of PTE (page table entry)
 4. read PTE from memory, add to TLB

5. extract PFN from TLB (page frame num)
6. build PA (phys addr)
7. read contents of PA from memory

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB
PT

P1 pagetable
3 7 9 …

P2
28 KB

TLB Accesses: SEQUENTIAL Example

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

Virt

load 0x0000
load 0x0004
…
…
load 0x2000

Phys

TLB Summary

Pages are great, but accessing page tables for every memory access is slow
Cache recent page translations à TLB

–  Hardware performs TLB lookup on every memory access
TLB performance depends strongly on workload

–  Sequential workloads perform well
–  Workloads with temporal locality can perform well

In different systems, hardware or OS handles TLB misses
TLBs increase cost of context switches

–  Flush TLB on every context switch
–  Add ASID to every TLB entry

Disadvantages of Paging
Additional memory reference to page table à Very inefficient

–  Page table must be stored in memory
–  MMU stores only base address of page table

Storage for page tables may be substantial
–  Simple page table: Requires PTE for all pages in address space
 Entry needed even if page not allocated ?

SMALLER PAGE TABLES

QUIZ: How big are page Tables?

1.  PTE’s are 2 bytes, and 32 possible virtual page numbers�

2.  PTE’s are 2 bytes, virtual addrs are 24 bits, pages are 16 bytes�

3.  PTE’s are 4 bytes, virtual addrs are 32 bits, and pages are 4 KB�

4.  PTE’s are 4 bytes, virtual addrs are 64 bits, and pages are 4 KB�

How big is each page table?

code
heap

stack

Virt Mem Phys Mem

Waste!

Why ARE Page Tables so Large?

Many invalid PT entries

PFN valid prot

10 1 r-x
 - 0 -
 23 1 rw-
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 28 1 rw-
 4 1 rw-

…many more invalid… how to avoid
storing these?

Use more complex page tables, instead of just big array
Any data structure is possible with software-managed TLB

–  Hardware looks for vpn in TLB on every memory access
–  If TLB does not contain vpn, TLB miss

•  Trap into OS and let OS find vpn->ppn translation
•  OS notifies TLB of vpn->ppn for future accesses

AVOID SIMPLE LINEAR PAGE TABLES?

Other Approaches

1.  Segmented Pagetables
2.  Multi-level Pagetables
–  Page the page tables
–  Page the pagetables of page tables…

3. Inverted Pagetables

valid Ptes are Contiguous

Note “hole” in addr space:
valids vs. invalids are clustered

How did OS avoid allocating holes in phys
memory?

Segmentation

PFN valid prot

10 1 r-x
 - 0 -
 23 1 rw-
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 - 0 -
 28 1 rw-
 4 1 rw-

…many more invalid… how to avoid
storing these?

Combine Paging and Segmentation

Divide address space into segments (code, heap, stack)
–  Segments can be variable length

Divide each segment into fixed-sized pages
Logical address divided into three portions

page offset (12 bits) page number (8 bits) seg # (4 bits)

Implementation
•  Each segment has a page table
•  Each segment track base (physical address) and bounds of the page table

Quiz: Paging and Segmentation

seg		base	 bounds	 R	W	
0	 0x002000	 0xff	 1	0	
1	 0x000000	 0x00	 0	0	
2	 0x001000	 0x0f	 1	1	

...	
0x01f	
0x011	
0x003	
0x02a	
0x013	
...	
0x00c	
0x007	
0x004	
0x00b	
0x006	
...	

0x001000

0x0020000x002070	read:	
0x202016	read:	
0x104c84	read:	
0x010424	write:	
0x210014	write:	
0x203568	read:	

page offset (12 bits) page number (8 bits) seg # (4 bits)

Advantages of Paging and Segmentation

Advantages of Segments
–  Supports sparse address spaces.
–  Decreases size of page tables. If segment not used, not need for page table

Advantages of Pages
–  No external fragmentation
–  Segments can grow without any reshuffling
–  Can run process when some pages are swapped to disk (next lecture)

Advantages of Both
–  Increases flexibility of sharing: Share either single page or entire segment

Disadvantages of Paging and Segmentation

Potentially large page tables (for each segment)
–  Must allocate each page table contiguously
–  More problematic with more address bits
–  Page table size?

Assume 2 bits for segment, 18 bits for page number, 12 bits for offset

Each page table is:
= Number of entries * size of each entry
= Number of pages * 4 bytes
= 2^18 * 4 bytes = 2^20 bytes = 1 MB!!!

Other Approaches

1.  Segmented Pagetables
2.  Multi-level Pagetables
–  Page the page tables
–  Page the pagetables of page tables…

3. Inverted Pagetables

Multilevel Page Tables
Goal: Allow each page tables to be allocated non-contiguously

Idea: Page the page tables

–  Creates multiple levels of page tables; outer level “page directory”
–  Only allocate page tables for pages in use
–  Used in x86 architectures (hardware can walk known structure)

Multilevel Page Tables

outer page(8 bits) inner page (10 bits) page offset (12 bits)

30-bit address:

base of page directory

Multilevel
PPN

0x3
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
 -
 -
 0x80
 0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

Quiz: Multilevel
PPN

0x3
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
 -
 -
 0x80
 0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

 translate 0xFEED0

Address format for multilevel Paging

How should logical address be structured? How many bits for each paging level?
Goal?

–  Each page table fits within a page
–  PTE size * number PTE = page size
 Assume PTE size = 4 bytes
 Page size = 2^12 bytes = 4KB

à  # bits for selecting inner page =

Remaining bits for outer page:
–  30 – ___ – ___ = ___ bits

outer page inner page page offset (12 bits)
30-bit address:

Problem with 2 levels?
Problem: page directories (outer level) may not fit in a page

Solution:
–  Split page directories into pieces
–  Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1
VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
(each page table fits in page)

4KB / 4 bytes à 1K entries per level
1 level:
2 levels:
3 levels:

outer page? inner page (10 bits) page offset (12 bits)
64-bit address:

On TLB miss: lookups with more levels more expensive
Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xbb 0x91 1

211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

FULL SYSTEM WITH TLBS

Inverted Page TAble

Only need entries for virtual pages w/ valid physical mappings

Naïve approach: �
Search through data structure <ppn, vpn+asid> to find match

 Too much time to search entire table

Better:
Find possible matches entries by hashing vpn+asid

 Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

Summary: Better PAGE TABLES

Problem: Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure
–  Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
–  Multi-level page tables used in x86 architecture
–  Each page table fits within a page

.

SWAPPING

Motivation
OS goal: Support processes when not enough physical memory

–  Single process with very large address space
–  Multiple processes with combined address spaces

User code should be independent of amount of physical memory
–  Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

–  Relies on key properties of user processes (workload) and machine
architecture (hardware)

code
data
Program

Virtual Memory

code
data
Program

Virtual Memory

Locality of Reference

Leverage locality of reference within processes
–  Spatial: reference memory addresses near previously referenced addresses
–  Temporal: reference memory addresses that have referenced in the past
–  Processes spend majority of time in small portion of code

•  Estimate: 90% of time in 10% of code
Implication:

–  Process only uses small amount of address space at any moment
–  Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

–  Slower, cheaper backing store than memory
Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

–  Same behavior as if all of address space in main memory

Requirements:

–  OS must have mechanism to identify location of each page in address
space à in memory or on disk

–  OS must have policy for determining which pages live in memory and
which on disk

Virtual Address Space Mechanisms
Each page in virtual address space maps to one of three locations:

–  Physical main memory: Small, fast, expensive
–  Disk (backing store): Large, slow, cheap
–  Nothing (error): Free

Extend page tables with an extra bit: present
–  permissions (r/w), valid, present
–  Page in memory: present bit set in PTE
–  Page on disk: present bit cleared

•  PTE points to block on disk
•  Causes trap into OS when page is referencedTrap: page fault

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

–  if TLB hit, address translation is done; page in physical memory
Else TLB miss...

–  Hardware or OS walk page tables
–  If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

–  Trap into OS (not handled by hardware)
–  OS selects victim page in memory to replace

•  Write victim page out to disk if modified (add dirty bit to PTE)
–  OS reads referenced page from disk into memory
–  Page table is updated, present bit is set
–  Process continues execution

NEXT STEPS

Project 2a: Due Friday

Discussion section:

 How to use gdb
 xv6 scheduler walk through

Next class: More Swapping!

