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ADMINISTRIVIA 

-  Project 2b is out. Due Feb 27th, 11:59 
-  Project 1b grades are out 

 



Lessons from p2A ? 

1.  Start early! 
2.  Sketch out a design?  
3.  Synthesize ideas from various sources:  

 TAs, stackoverflow.com, gdb, discussion videos 
4.   Handling edge cases, string handling  



AGENDA / LEARNING OUTCOMES 

Memory virtualization 
 How we support virtual mem larger than physical mem? 
 What are mechanisms and policies for this? 

 



RECAP 



PAGING TRANSLATION STEPS 

For each mem reference: 
 
1. extract VPN (virt page num) from VA (virt addr) 
2. check TLB for VPN 
   if miss: 

  3. calculate addr of PTE (page table entry) 
  4. read PTE from memory, add to TLB 

5. extract PFN from TLB (page frame num) 
6. build PA (phys addr) 
7. read contents of PA from memory 



Combine Paging and Segmentation 

Divide address space into segments (code, heap, stack) 
–  Segments can be variable length 

Divide each segment into fixed-sized pages 
Logical address divided into three portions 

page offset (12 bits) page number (8 bits) seg # (4 bits) 

Implementation 
•  Each segment has a page table 
•  Each segment track base (physical address) and bounds of the page table 



Multilevel Page Tables 

outer page(8 bits) inner page (10 bits) page offset (12 bits) 

30-bit address: 

base of page directory 



Address format for multilevel Paging 

How should logical address be structured? How many bits for each paging level? 
Goal?   

–  Each page table fits within a page 
–  PTE size * number PTE = page size 
     Assume PTE size = 4 bytes 
     Page size = 2^12 bytes = 4KB 

à  # bits for selecting inner page =  
 

Remaining bits for outer page:  
–  30 – ___ – ___ = ___ bits 

outer page inner page page offset (12 bits) 
30-bit address: 



Problem with 2 levels? 
Problem: page directories (outer level) may not fit in a page 
 
 

Solution:  
–  Split page directories into pieces 
–  Use another page dir to refer to the page dir pieces. 

PT idx OFFSETPD idx 1
VPN 

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,  
(each page table fits in page) 

4KB / 4 bytes à 1K entries per level 
1 level: 
2 levels: 
3 levels: 

outer page? inner page (10 bits) page offset (12 bits) 
64-bit address: 



On TLB miss: lookups with more levels more expensive 
Assume 3-level page table 
Assume 256-byte pages 
Assume 16-bit addresses 
Assume ASID of current process is 211 

How many physical accesses for each instruction?  (Ignore ops changing TLB) 

(a) 0xAA10: movl 0x1111, %edi 

 

(b) 0xBB13: addl $0x3, %edi 

 
 
(c) 0x0519: movl %edi, 0xFF10 

ASID VPN PFN Valid 

211 0xbb 0x91 1 

211 0xff 0x23 1 

122 0x05 0x91 1 

211 0x05 0x12 0 

FULL SYSTEM WITH TLBS 



https://tinyurl.com/cs537-sp19-bunny1 



Inverted Page TAble 

Only need entries for virtual pages w/ valid physical mappings

Naïve approach: �
Search through data structure <ppn, vpn+asid> to find match

   Too much time to search entire table

Better: 
Find possible matches entries by hashing vpn+asid

  Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB



Summary: Better PAGE TABLES 

Problem:  Simple linear page tables require too much contiguous memory  
 
Many options for efficiently organizing page tables 
If OS traps on TLB miss, OS can use any data structure 
–  Inverted page tables (hashing) 

If Hardware handles TLB miss, page tables must follow specific format 
–  Multi-level page tables used in x86 architecture 
–  Each page table fits within a page 

. 



SWAPPING 



Motivation 
OS goal: Support processes when not enough physical memory 

–  Single process with very large address space 
–  Multiple processes with combined address spaces 

User code should be independent of amount of physical memory 
–  Correctness, if not performance 

Virtual memory: OS provides illusion of more physical memory 
Why does this work? 

–  Relies on key properties of user processes (workload) and machine 
architecture (hardware) 



code 
data 
Program 

Virtual Memory 



code 
data 
Program 

Virtual Memory 



Locality of Reference 

Leverage locality of reference within processes 
–  Spatial: reference memory addresses near previously referenced addresses 
–  Temporal: reference memory addresses that have referenced in the past 
–  Processes spend majority of time in small portion of code 

•  Estimate: 90% of time in 10% of code 
Implication:  

–  Process only uses small amount of address space at any moment 
–  Only small amount of address space must be resident in physical memory 



Memory Hierarchy 
Leverage memory hierarchy of machine architecture 
Each layer acts as “backing store” for layer above 

disk storage 

main memory 

cache 

registers 

size 
speed cost 



SWAPPING Intuition 
Idea: OS keeps unreferenced pages on disk 

–  Slower, cheaper backing store than memory 
Process can run when not all pages are loaded into main memory 
OS and hardware cooperate to make large disk seem like memory 

–  Same behavior as if all of address space in main memory 
 
Requirements: 

–  OS must have mechanism to identify location of each page in address 
space à in memory or on disk 

–  OS must have policy for determining which pages live in memory and 
which on disk 



SWAPPING Mechanisms 
Each page in virtual address space maps to one of three locations: 

–  Physical main memory: Small, fast, expensive 
–  Disk (backing store): Large, slow, cheap 
–  Nothing (error): Free 
 

Extend page tables with an extra bit: present 
–  permissions (r/w), valid, present 
–  Page in memory: present bit set in PTE 
–  Page on disk: present bit cleared 

•  PTE points to block on disk 
•  Causes trap into OS when page is referenced 



Present Bit 

PFN valid  prot        present 
10  1   r-x   1 
-  0   -   - 
23  1   rw-   0 

28  1   rw-   0 
4  1   rw-   1 

-  0   -   - 
-  0   -   - 
-  0   -   - 
-  0   -   - 
-  0   -   - 
-  0   -   - 
-  0   -   - 
-  0   -   - 

Phys Memory 

Disk 

What if access vpn 0xb? 



Virtual Memory Mechanisms 
First, hardware checks TLB for virtual address 

–  if TLB hit, address translation is done; page in physical memory 
Else TLB miss... 

–  Hardware or OS walk page tables 
–  If PTE designates page is present, then page in physical memory 

 page fault (i.e., present bit is cleared) 
Else 

–  Trap into OS (not handled by hardware) 
–  OS selects victim page in memory to replace 

•  Write victim page out to disk if modified (add dirty bit to PTE) 
–  OS reads referenced page from disk into memory 
–  Page table is updated, present bit is set 
–  Process continues execution 



SWAPPING Policies 



SWAPPING Policies 

Goal: Minimize number of page faults 
–  Page faults require milliseconds to handle (reading from disk) 
–  Implication: Plenty of time for OS to make good decision 

 
OS has two decisions 

–  Page selection 
     When should a page (or pages) on disk be brought into memory? 

 
–  Page replacement 
     Which resident page (or pages) in memory should be thrown out to disk? 



Page Selection 
Demand paging: Load page only when page fault occurs 

–  Intuition: Wait until page must absolutely be in memory 
–  When process starts: No pages are loaded in memory 
–  Problems: Pay cost of page fault for every newly accessed page 

Prepaging (anticipatory, prefetching): Load page before referenced 
–  OS predicts future accesses (oracle) and brings pages into memory early 
–  Works well for some access patterns (e.g., sequential) 
–  Problems? 

Hints: Combine above with user-supplied hints about page references 
–  User specifies: may need page in future, don’t need this page anymore, or 

sequential access pattern, ... 
–  Example: madvise() in Unix 



Page Replacement 
Which page in main memory should selected as victim? 

–  Write out victim page to disk if modified (dirty bit set) 
–  If victim page is not modified (clean), just discard 

 
 
OPT: Replace page not used for longest time in future 

–  Advantages: Guaranteed to minimize number of page faults 
–  Disadvantages: Requires that OS predict the future; Not practical, but good for 

comparison 



Page Replacement 
FIFO: Replace page that has been in memory the longest 

–  Intuition: First referenced long time ago, done with it now 
–  Advantages: Fair: All pages receive equal residency; Easy to implement 
–  Disadvantage: Some pages may always be needed 
 

LRU: Least-recently-used: Replace page not used for longest time in past 
–  Intuition: Use past to predict the future 
–  Advantages: With locality, LRU approximates OPT 
–  Disadvantages: 

•  Harder to implement, must track which pages have been accessed 
•  Does not handle all workloads well 



Page Replacement Example 
Page reference string: ABCABDADBCB 

OPT FIFO LRU 
ABC 

B 
D 

A 

D 

B 

C 
B 

A 

Three pages 
of physical 
memory 

Metric: 
Miss count 



https://tinyurl.com/cs537-sp19-bunny2 



Page Replacement Comparison 

Add more physical memory, what happens to performance? 
LRU, OPT:  
•  Guaranteed to have fewer (or same number of) page faults 
•  Smaller memory sizes are guaranteed to contain a subset of larger memory sizes 
•  Stack property: smaller cache always subset of bigger 

FIFO:  
•  Usually have fewer page faults 
•  Belady’s anomaly: May actually have more page faults! 



Fifo Performance may Decrease! 

Consider access stream: ABCDABEABCDE 
 
Consider physical memory size: 3 pages vs. 4 pages 
 
How many misses with FIFO? 



Implementing LRU 
Software Perfect LRU 

–  OS maintains ordered list of physical pages by reference time 
–  When page is referenced: Move page to front of list 
–  When need victim: Pick page at back of list 
–  Trade-off: Slow on memory reference, fast on replacement 

Hardware Perfect LRU 
–  Associate timestamp register with each page 
–  When page is referenced: Store system clock in register 
–  When need victim: Scan through registers to find oldest clock 
–  Trade-off: Fast on memory reference, slow on replacement (especially as size of 

memory grows) 
In practice, do not implement Perfect LRU 

–  LRU is an approximation anyway, so approximate more 
–  Goal: Find an old page, but not necessarily the very oldest 



Clock Algorithm 

Hardware
–  Keep use (or reference) bit for each page frame
–  When page is referenced: set use bit

Operating System
–  Page replacement: Look for page with use bit cleared �

(has not been referenced for awhile)
–  Implementation:

•  Keep pointer to last examined page frame
•  Traverse pages in circular buffer
•  Clear use bits as search
•  Stop when find page with already cleared use bit, replace this page



Clock: Look For a Page 

0 1 2 3 … Physical Mem: 

Use= Use= Use= Use= 

clock hand 



Clock Extensions 

Replace multiple pages at once
–  Intuition:  Expensive to run replacement algorithm and to write single block to disk
–  Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
–  Intuition: More expensive to replace dirty pages
     Dirty pages must be written to disk, clean pages do not
–  Replace pages that have use bit and dirty bit cleared



SUMMARY: VIRTUAL MEMORY 

Abstraction: Virtual address space with code, heap, stack 
Address translation 

 - Contiguous memory: base, bounds, segmentation 
 - Using fixed sizes pages with page tables 

Challenges with paging 
 - Extra memory references: avoid with TLB 
 - Page table size: avoid with multi-level paging, inverted page tables etc. 

 
Larger address spaces: Swapping mechanisms, policies (LRU, Clock) 



NEXT STEPS 

Project 2b: Out now 
 
Next class: New module on Concurrency 


