
MEMORY: SWAPPING

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

-  Project 2b is out. Due Feb 27th, 11:59
-  Project 1b grades are out

Lessons from p2A ?

1.  Start early!
2.  Sketch out a design?
3.  Synthesize ideas from various sources:

 TAs, stackoverflow.com, gdb, discussion videos
4. Handling edge cases, string handling

AGENDA / LEARNING OUTCOMES

Memory virtualization
 How we support virtual mem larger than physical mem?
 What are mechanisms and policies for this?

RECAP

PAGING TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. check TLB for VPN
 if miss:

 3. calculate addr of PTE (page table entry)
 4. read PTE from memory, add to TLB

5. extract PFN from TLB (page frame num)
6. build PA (phys addr)
7. read contents of PA from memory

Combine Paging and Segmentation

Divide address space into segments (code, heap, stack)
–  Segments can be variable length

Divide each segment into fixed-sized pages
Logical address divided into three portions

page offset (12 bits) page number (8 bits) seg # (4 bits)

Implementation
•  Each segment has a page table
•  Each segment track base (physical address) and bounds of the page table

Multilevel Page Tables

outer page(8 bits) inner page (10 bits) page offset (12 bits)

30-bit address:

base of page directory

Address format for multilevel Paging

How should logical address be structured? How many bits for each paging level?
Goal?

–  Each page table fits within a page
–  PTE size * number PTE = page size
 Assume PTE size = 4 bytes
 Page size = 2^12 bytes = 4KB

à  # bits for selecting inner page =

Remaining bits for outer page:
–  30 – ___ – ___ = ___ bits

outer page inner page page offset (12 bits)
30-bit address:

Problem with 2 levels?
Problem: page directories (outer level) may not fit in a page

Solution:
–  Split page directories into pieces
–  Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1
VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
(each page table fits in page)

4KB / 4 bytes à 1K entries per level
1 level:
2 levels:
3 levels:

outer page? inner page (10 bits) page offset (12 bits)
64-bit address:

On TLB miss: lookups with more levels more expensive
Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xbb 0x91 1

211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

FULL SYSTEM WITH TLBS

https://tinyurl.com/cs537-sp19-bunny1

Inverted Page TAble

Only need entries for virtual pages w/ valid physical mappings

Naïve approach: �
Search through data structure <ppn, vpn+asid> to find match

 Too much time to search entire table

Better:
Find possible matches entries by hashing vpn+asid

 Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

Summary: Better PAGE TABLES

Problem: Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure
–  Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
–  Multi-level page tables used in x86 architecture
–  Each page table fits within a page

.

SWAPPING

Motivation
OS goal: Support processes when not enough physical memory

–  Single process with very large address space
–  Multiple processes with combined address spaces

User code should be independent of amount of physical memory
–  Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

–  Relies on key properties of user processes (workload) and machine
architecture (hardware)

code
data
Program

Virtual Memory

code
data
Program

Virtual Memory

Locality of Reference

Leverage locality of reference within processes
–  Spatial: reference memory addresses near previously referenced addresses
–  Temporal: reference memory addresses that have referenced in the past
–  Processes spend majority of time in small portion of code

•  Estimate: 90% of time in 10% of code
Implication:

–  Process only uses small amount of address space at any moment
–  Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

–  Slower, cheaper backing store than memory
Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

–  Same behavior as if all of address space in main memory

Requirements:

–  OS must have mechanism to identify location of each page in address
space à in memory or on disk

–  OS must have policy for determining which pages live in memory and
which on disk

SWAPPING Mechanisms
Each page in virtual address space maps to one of three locations:

–  Physical main memory: Small, fast, expensive
–  Disk (backing store): Large, slow, cheap
–  Nothing (error): Free

Extend page tables with an extra bit: present
–  permissions (r/w), valid, present
–  Page in memory: present bit set in PTE
–  Page on disk: present bit cleared

•  PTE points to block on disk
•  Causes trap into OS when page is referenced

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

–  if TLB hit, address translation is done; page in physical memory
Else TLB miss...

–  Hardware or OS walk page tables
–  If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

–  Trap into OS (not handled by hardware)
–  OS selects victim page in memory to replace

•  Write victim page out to disk if modified (add dirty bit to PTE)
–  OS reads referenced page from disk into memory
–  Page table is updated, present bit is set
–  Process continues execution

SWAPPING Policies

SWAPPING Policies

Goal: Minimize number of page faults
–  Page faults require milliseconds to handle (reading from disk)
–  Implication: Plenty of time for OS to make good decision

OS has two decisions

–  Page selection
 When should a page (or pages) on disk be brought into memory?

–  Page replacement
 Which resident page (or pages) in memory should be thrown out to disk?

Page Selection
Demand paging: Load page only when page fault occurs

–  Intuition: Wait until page must absolutely be in memory
–  When process starts: No pages are loaded in memory
–  Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
–  OS predicts future accesses (oracle) and brings pages into memory early
–  Works well for some access patterns (e.g., sequential)
–  Problems?

Hints: Combine above with user-supplied hints about page references
–  User specifies: may need page in future, don’t need this page anymore, or

sequential access pattern, ...
–  Example: madvise() in Unix

Page Replacement
Which page in main memory should selected as victim?

–  Write out victim page to disk if modified (dirty bit set)
–  If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future

–  Advantages: Guaranteed to minimize number of page faults
–  Disadvantages: Requires that OS predict the future; Not practical, but good for

comparison

Page Replacement
FIFO: Replace page that has been in memory the longest

–  Intuition: First referenced long time ago, done with it now
–  Advantages: Fair: All pages receive equal residency; Easy to implement
–  Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
–  Intuition: Use past to predict the future
–  Advantages: With locality, LRU approximates OPT
–  Disadvantages:

•  Harder to implement, must track which pages have been accessed
•  Does not handle all workloads well

Page Replacement Example
Page reference string: ABCABDADBCB

OPT FIFO LRU
ABC

B
D

A

D

B

C
B

A

Three pages
of physical
memory

Metric:
Miss count

https://tinyurl.com/cs537-sp19-bunny2

Page Replacement Comparison

Add more physical memory, what happens to performance?
LRU, OPT:
•  Guaranteed to have fewer (or same number of) page faults
•  Smaller memory sizes are guaranteed to contain a subset of larger memory sizes
•  Stack property: smaller cache always subset of bigger

FIFO:
•  Usually have fewer page faults
•  Belady’s anomaly: May actually have more page faults!

Fifo Performance may Decrease!

Consider access stream: ABCDABEABCDE

Consider physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

Implementing LRU
Software Perfect LRU

–  OS maintains ordered list of physical pages by reference time
–  When page is referenced: Move page to front of list
–  When need victim: Pick page at back of list
–  Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
–  Associate timestamp register with each page
–  When page is referenced: Store system clock in register
–  When need victim: Scan through registers to find oldest clock
–  Trade-off: Fast on memory reference, slow on replacement (especially as size of

memory grows)
In practice, do not implement Perfect LRU

–  LRU is an approximation anyway, so approximate more
–  Goal: Find an old page, but not necessarily the very oldest

Clock Algorithm

Hardware
–  Keep use (or reference) bit for each page frame
–  When page is referenced: set use bit

Operating System
–  Page replacement: Look for page with use bit cleared �

(has not been referenced for awhile)
–  Implementation:

•  Keep pointer to last examined page frame
•  Traverse pages in circular buffer
•  Clear use bits as search
•  Stop when find page with already cleared use bit, replace this page

Clock: Look For a Page

0 1 2 3 … Physical Mem:

Use= Use= Use= Use=

clock hand

Clock Extensions

Replace multiple pages at once
–  Intuition: Expensive to run replacement algorithm and to write single block to disk
–  Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
–  Intuition: More expensive to replace dirty pages
 Dirty pages must be written to disk, clean pages do not
–  Replace pages that have use bit and dirty bit cleared

SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation

 - Contiguous memory: base, bounds, segmentation
 - Using fixed sizes pages with page tables

Challenges with paging
 - Extra memory references: avoid with TLB
 - Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

NEXT STEPS

Project 2b: Out now

Next class: New module on Concurrency

