ko‘o\(‘_\.

\Wile””

VIRTUALIZATION: CPU

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Project la is out! Due Jan 29 at 10.00pm

Signup for Piazza https://piazza.com/wisc/spring2020/cs537
Lecture notes at pages.cs.wisc.edu/~shivaram/cs537-sp20/

Drop? Waitlist? Email enrollment@cs.wisc.edu and cc me
P @

https://piazza.com/wisc/spring2020/cs537
http://cs.wisc.edu

AGENDA / OUTCOMES

Abstraction
What is a Process ? What is its lifecycle ?

Mechanism
How does process interact with the OS ?

How does the OS switch between processes ?

ABSTRACTION: PROGESS

PROGRAM VS PROCESS
clpwc

#tinclude <stdio.h> -
#include <stdlib.h> .C

#include "common.h" W
/
Q T\

int main(int argc, char *argv[])
char *str = argv[1];

while (1) {

printf("%s\n", str); V“‘-~‘\\\\\\\\
}
return 0;

WHAT IS A PROCESS?

Stream of executing instructions and their&:ontext)

pushg %rbp
mov(%rsp, %rbp fmf"'”b’ 04\—
Instruction ———>|subq __ $32, %rsp |
Pointer mov1l $0, -4(%rbp) 2 Registers
| movl %edi, -8(%rbp) Memory addrs
» 'a& " movq %rsi, -16(%rbp) ww!/ o
Y (\],‘QL cmpl $2, -8(%rbp)
Kot U‘"KQ})(Je LBBO_2 File descriptors

PROCESS CREATION

CPU

P

Memory/q

9

\,wﬁ(‘“j,}f‘"a oY
e M7

-, Rogey
——3 7f
—> lteap
> Maclk

PROCESS CREATION

CPU

:code, static data: :
‘heap

Can run multiple
instances of same
program

Each program has its
Program own stack, heap etc.

PROCESS VS THREAD

Threads: “Lightweight process” m

l——’D

Execution streams that share anr&ddress space \ |

Can directly read / write memo

Can have multiple threads within a single process

Demo!?

SHARING THE CPU

SHARING CPU

e ——————— P ————— P e ———

code, static datal icode, static datal icode, static data’
‘hea i ‘hea i thea N !
oy o
istack - istack stack
P T——
({V\e' M\Od’('\z,
O do |V mb

1o de 70 Mm%

TIME SHARING

e ——————— e ——— e ———

SHARING CPU

P ——————— P ————— P e ———

:code, static data: :code, static data: :code, static data:
‘heap i ‘heap i ‘heap

istack i istack i istack

TIME SHARING

e ——————— e ——— e ———

E :code, static data:
I I i ‘heap i
'stack

%M’QY
WHAT TO DO WITH PROCESSES ﬂ

THAT ARE NOT RUNNING ? 7&% e

@l

OS Scheduler
Save context when process is paused
Restore context on resumption

STATETRANSITIONS <4+

\eady @]
Vg LW] th| Bhcled [72]
escheduled
A Ready
Scheduled
s ﬁ @ (I/0O: done >

a.- ;
/‘{TOM A' k Blocked
s

STATE TRANSITIONS

ASIDE: OSTEP HOMEWORKS!

- Optional homeworks corresponding to each chapter in book
- Little simulators to help you understand

- Can generate problems and solutions!

http://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

PROCESS HW

Run ./process_run.py —| 2:100,2:0

C,‘TWQ‘ WOD(QW/QUE ‘I https://tinyurl.com/cs537-sp20-quiz|
@\ AL

2 ./process-run.py -l 3:50,3:40 Time| PID:0 PID. |
Process 0 | RUN:io READY

io 2 |WAITING| RUN:cpu

o 3 |WAITING| RUN:io

cpu 4 |WAITING| WAITING

- Fach |O takes 5 5 |WAITING| WAITING }dxf
Process | time units 6 |RUN:io | WAITING |
cpu ¢ 7 |WAITING| WAITING

o ~ g \WNTING) QuN: o

g .',9) What happens at time 8?

CPU SHARING

Policy goals
Virtualize CPU resource using processes

Reschedule process for fairness? efficiency ?
MV

Mechanism goals

Efficiency: Sharing should not add overhead

OS should be able to intervene when required

EFFICIENT EXECUTION

Simple answer !2: Direct Execution b
<4l
Allow user process to run directly ;(‘_\e f,w*)v’
: a
Create process and transfer control to main() o (\},\a,bk ?Q

Challenges
What if the process wants to do something restricted ? Access disk ?

What if the process runs forever ? Buggy ? Malicious ?

e ———— e

Solution: Limited Direct Execution (LDE)

PROBLEM 1: RESTRICTED OPS

How can we ensure user process can’t harm others?

Solution: privilege levels supported by hardware (bit of status) Q‘dw
User processes run in user mode (restricted mode)r{wo‘ a ’,J‘l@

OS runs in kernel mode (not restricted) 05‘
v
. Yon ec k
How can process access devices! e
rSy’ste_mc/aI[s (function call implemented by OS) Aiblc

‘ v

SYSTEM CALL

sl L sl et ewokd B %M
’ t de

SYSTEM CALL

Process P
/ AN

RAM

P wants to call read()

SYSTEM CALL

Process P
/ AN

G M‘% RAM
¢ P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

P wants to call read() but no way to call it directly

Process P

SYSTEM CALL

/

N\

RAM

movl $6, %eax;

5'32;@0(‘/x\;t'%\/&/@ Y

int $64

T

sl

64 - bpkom ol
SYSTEM CALL o

- Va,ae

movl $6, %eax; int S$64 LI LA

SYSTEM CALL

Process P

/

RAM

. Trap tabl
sl @l movl $6, %eax; int $64 — i
index o o index

SYSTEM CALL o

Process P
——A\

RAM

movl $S6, %eax; int S64

Follow entries to correct system call code

SYSTEM CALL

{ RAM

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

/_—

Syscall: call kernel mode functions
‘/—u

Transfer from user-mode to kernel-mode (trap)

Return from kernel-mode to user-mode (return-from-trap)

QUIZ 2 https://tinyurl.com/cs537-sp20-quiz2

// System call numbers

#define SYS kill
#define SYS_exec

—_—

#define SYS open

To call SYS_read the instructions we used were #define SYS_fork 1
#define SYS exit 2
movl 36, %eax #define SYS wait 3

int $64 Srane sis e
#define SYS pipe 4
To call SYS exec what will be the instructions? #define SYS write 5
E ﬁ #define SYS read 6

o,
rnovl 7eeax #define SYS close 7
int 6% -

8
9
10

PROBLEMZ2: HOW TO TAKE GPU AWAY

Policy
To decide which process to schedule when

Decision-maker to optimize some workload performance metric
Mechanism
To switch between processes

Low-level code that implements the decision

Separation of policy and mechanism: Recurring theme in OS

DISPATGH MECHANISM

OS runs dispatch loop

while (1) {
run process A for some time-slice
stop process A and save its context
load context of another process B

Question |: How does dispatcher gain control?
Question 2: What must be saved and restored?

HOW DOES DISPATCHER GET CONTROL?

Option |: Cooperative Multi-tasking: Trust process to relinquish CPU through traps

Examples: System call, page fault (access page not in main memory), or error

(illegal instruction or divide by zero)
— Provide special yield() system call

yield() call 1yield() return

PROBLEMS WITH COOPERATIVE ?

Disadvantages: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine

Only solution: Reboot!

Not performed in modern operating systems

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking
Guarantee OS can obtain control periodically
Enter OS by enabling periodic alarm clock

Hardware generates timer interrupt (CPU or separate chip) Example: Every 10ms

User must not be able to mask timer interrupt

Operating System Hardware Program
Process A

Operating System

Hardware Program

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System

Handle the trap

Call switch() routine

save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

Hardware

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Program
Process A

Operating System Hardware Program

Process A

timer interrupt
save regs(A) to k-stack(A)

Handle the trap move to kernel mode
Call switch() routine jump to trap handler
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Process A

timer interrupt
save regs(A) to k-stack(A)

Handle the trap move to kernel mode
Call switch() routine jump to trap handler
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Process B

SUMMARY

Process: Abstraction to virtualize CPU

Use time-sharing in OS to switch between processes

Key aspects
Use system calls to run access devices etc. from user mode

Context-switch using interrupts for multi-tasking

POLICY ?
NEXT CLASS!

NEXT STEPS

Project la: Due Jan 29 (Wednesday) at 10pm
Project Ib: Out on Jan 29

Discussion section: Thursday 5.30pm-6.30pm at 105 Psychology

Waitlist? Email enrollment@cs.wisc and cc me (will finalize by Monday)

http://cs.wisc

