PERSISTENCE: RAID

Shivaram Venkataraman CS 537, Spring 2020

ADMINISTRIVIA

Midterm grades

Grading Complete

Uphading Poffs

roject 4a: Spec updates, test cases

roject 4a: New due date April 3rd

Raw /Fail Options

Ly CS adviking adviking adviking adviking acs. wisc.edu

Croding Poffs

Ly Exams

AGENDA / LEARNING OUTCOMES

Why do we need more than one disk in a system?

How do we achieve resilience against disk errors?

RECAP

SEEK, ROTATE, TRANSFER

Seek cost: Function of cylinder distance

Not purely linear cost

Must accelerate, coast, decelerate, settle

Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - 10 ms Average seek = 1/3 of max seek Depends on rotations per minute (RPM)
7200 RPM is common, I 5000 RPM is high end

Average rotation – half of a rotation

Franker

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

I/O SCHEDULERS

Random expensive Jegnential

Given a stream of I/O requests, in what order should they be served?

Much different than CPU scheduling

Position of disk head relative to request position matters more than length of job

QUIZ 22

https://tinyurl.com/cs537-sp20-quiz22

Disk accesses: 32, 12, 33, 3, 13, 4 Rotation Time = 2ms (non-adjacent reads) Seek Time (for adjacent track) = 2ms.

24 ms

What is the time taken to using (FCFS) scheduling?

Order in which requests will be serviced for Shortest Seek Time First (SSTF)?

OUIZ 22

https://tinyurl.com/cs537-sp20-quiz22

Disk accesses: 32, 12, 33, 3, 13, 4 Rotation Time = 2ms (non-adjacent reads) Seek Time (for adjacent track) = 2ms.

Order in which requests will be serviced for Shortest Seek Time First (SSTF)?

SCHEDULERS

of scheduler does scheduling sertors close to each other

Where should the scheduler go?

Disk Can do fur ther reading

WHAT HAPPENS?

```
Assume 2 processes each calling read() with C-SCAN
    char buf[1024]; 512 bytes sector OS
int nu.
void reader(int fd) {
                                                        100
                                                                  302
     int rv;
     while((rv = read(fd, buf)) != 0) {
         assert(rv);
         // takes short time, e.g., 1ms
         process(buf, rv);
                          Even though process is reading not sequentially disk reads may not be.
```

WORK CONSERVATION

Work conserving schedulers always try to do work if there's work to be done

Sometimes, it's better to wait instead if system anticipates another request will arrive

DISKS SUMMARY

Disks: Specific geometry with platters, spindle, tracks, sectors

I/O Time: rotation_time + seek_time + transfer_time

Sequential throughput vs. random throughput

Advanced Techniques: Skewed layout, caching

Scheduling approaches: SSTF, SCAN, C-SCAN
Benefits of violating work conservation

ONLY ONE DISK?

Sometimes we want many disks — why?

- reliability -> Physical media wear leter

- performance

Challenge: most file systems work on only one disk

SOLUTION 1: JBOD

Application is smart, stores different files on different file systems.

JBOD: Just a Bunch Of Disks

SOLUTION 2: RAID

Build logical disk
from many
physical disks.

FS

Logical disk gives

capacity,
performance,
reliability

RAID: Redundant Array of Inexpensive Disks

Disk pring

-> Economies of scale

2TB disk

\$/TB

20TB disk? 710x

GENERAL STRATEGY: MAPPING, REDUNDANCY

MAPPING

How should we map logical block addresses to physical block addresses?

1) Dynamic mapping: use data structure (hash table, tree)

2) Static mapping: use simple math

RAID schenes J different strategies
also called levels _____ napping

WORKLOADS

```
Reads
     One operation
                     read 10 MB of data

read 4KB of data

1KB of data
     Steady-state I/O
        Sequential
        Random
Writes
     One operation
     Steady-state I/O
        Sequential
```

Random

METRICS

hogical disk

hogical disk

ferms of physical

suse?

Capacity: how much space can apps use?

Reliability: how many disks can we safely lose? (assume fail stop)

Performance: how long does each workload take? (latency, throughput)

Normalize each to characteristics of one disk

Different **RAID** levels make different trade-offs

Disk with capacity C N such disks Max. N * C Actual maybe < N* C Capacity

RAID-0: STRIPING

RAID O: STRIPES AND CHUNK SIZE inaccentible

		Fails =)	back 1,5,	9,13
Chunk size = I	Dials 0		Diale 2	Diale 4
	Disk 0	DISK I	Disk 2	Disk 4
_	0.		2.	3 ,
stripe:	4	5	6	7
	8	9	10	11
	12	13	14	15

assume chunk size of I for this lecture

Chunk size = 2	Disk 0	Disk I	Disk 2	Disk 4
Contractory		2 3	(4 ₅)	6 7
Jan a	$\binom{8}{9}$		$\binom{12}{13}$	(14)

RAID-0: ANALYSIS

What is capacity? N & C as we use all the disks to star	re
What is capacity? N * C as we we we will have	
How many disks can we safely lose?	
Latency (random) D Latency (random) D Latency (random)	
Throughput (sequential, random)? located=> latency of read latency of read located=> latency of read locat	
Notations reg to disks	
N:= number of disks C:= capacity of I disk S:= sequential throughput of I disk R:= random throughput of I disk D:= latency of one small I/O operation	

RAID-1: MIRRORING

RAID-1 LAYOUT: MIRRORING

4 disks

2 disks	Disk 0	Disk I			
	0	0			
	1	I			
	2	2			
	3	3			1
•				0.000	munbe y
2 coppes				ple.	disks
2copies Disk 0	D isk I	Disk 2	Disk 💋	47	
70	0/4	l			
2	/ 2	3	\3		
4	4	5	/ 5\		
6	6	7	7		

RAID-1: ANALYSIS

What is capacity?

How many disks can fail?

Latency (read, write)?

N := number of disks

C := capacity of I disk

S := sequential throughput of I disk

R := random throughput of I disk

D := latency of one small I/O operation

) at lest, sometimes more than

1 failure is also OK

)	
Disk 0	Disk I
0 🗸	0
I	1
2	2
3	3

RAID-1: THROUGHPUT

What is steady-state throughput for

- random reads? N*
- random writes?
- sequential writes?
- sequential reads?

as random
writer

Send up

having skip sectors

QUIZ 23

https://tinyurl.com/cs537-sp20-quiz23

Disk characteristics: Average seek time = 7ms, Average rotational time = 3ms, transfer rate = 50 MB/s

Sequential transfer of IOMB:
$$T_A + T_V + T_V$$

Effective

 $T_A + T_V + T_V$
 $T_A + T_V + T_V$
 $T_A + T_V + T_V$

Random transfer of IOKB

$$T_A + T_V + T_V$$

$$T_A + T_V + T_V$$

Effective

 $T_A + T_V + T_V$
 $T_A + T_V +$

RAID-4 STRATEGY

Use parity disk

If an equation has N variables, and N-I are known, you can solve for the unknown.

Treat sectors across disks in a stripe as an equation.

Data on bad disk is like an unknown in the equation.

RAID 4: EXAMPLE

	Disk0	Diskl	Disk2	Disk3	Disk4
Stripe:	3	0	I	2	
					parity

What functions can we use to compute parity?

RAID-4: ANALYSIS

What is capacity?
How many disks can fail?
Latency (read, write)?

Disk0	Diskl	Disk2	Disk3	Disk4 [oarity
I	0	I	I	I	
0	I	I	0	0	
I	I	0	I	I	

N := number of disks

C := capacity of I disk

S := sequential throughput of I disk

R := random throughput of I disk

D := latency of one small I/O operation

RAID-4: THROUGHPUT

What is steady-state throughput for

- sequential reads?
- sequential writes?
- random reads?
- random writes? (next page!)

Disk0	Diskl	Disk2	Disk3	Disk4
3	0	I	2	6

(parity)

RAID-4: ADDITIVE VS SUBTRACTIVE

C0	CI	C2	C3	P0
0	0	I	1	XOR(0,0,1,1)

Additive Parity

Subtractive Parity

$$P_{new} = (C_{old} \oplus C_{new}) \oplus P_{old}$$

RAID-5

Disk0	Diskl	Disk2	Disk3	Disk4
-	-	-	-	Р
	-	-	Р	-
	-	Р	-	-

Rotate parity across different disks

RAID-5: ANALYSIS

What is capacity?

How many disks can fail?

Latency (read, write)?

N := number of disks

C := capacity of I disk

S := sequential throughput of I disk

R := random throughput of I disk

D := latency of one small I/O operation

Disk0	Diskl	Disk2	Disk3	Disk4
-	-	-	-	Р
			Р	
<u> </u>			Г	-
-	-	Р	-	-

RAID-5: THROUGHPUT

What is steady-state throughput for RAID-5?

- sequential reads?
- sequential writes?
- random reads?
- random writes? (next page!)

Disk0	Diskl	Disk2	Disk3	Disk4
-	-	-	-	Р
-	-	-	Р	-
-	-	۲	-	-

. . .

RAID-5 RANDOM WRITES

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4	
0	1	2	3	P0	
5	6	7	P1	4	
10	11	P2	8	9	
15	P3	12	13	14	
P4	16	17	18	19	

RAID LEVEL COMPARISONS

	Reliability	Capacity	Read latency	Write Latency	Seq Read	Seq Write	Rand Read	Rand Write
RAID-0	0	C*N	D	D	N * S	N * S	N * R	N * R
RAID-I	I	C*N/2	D	D	N/2 * S	N/2 * S	N * R	N/2 * R
RAID-4	I	(N-I) * C	D	2D	(N-I)*S	(N-I)*S	(N-I)*R	R/2
RAID-5	I	(N-I) * C	D	2D	(N-I)*S	(N-I)*S	N*R	N/4 * R

SUMMARY

RAID: a faster, larger, more reliable disk system

One logical disk built from many physical disk

Different mapping and redundancy schemes

Present different trade-offs

Next steps: Filesystems on Thu

P4a due on Friday!