\
wb’”"
W 9”

REVIEW, SUMMARY

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA
Project 5 grades on the way. —— [&w\w(a v W“U“ﬁ La M”{U

V\LX/{/ \,JQ/IC~

Final Exam: — Mowday || o
- . . 2 V\O
Everything up to including NFS. ~— « to & (”M“a Mo 7
May 4, 10:05am-12:05pm Lech—¢
2—/7 V(mm

No discussion today!

L—? St w(A] /ﬁ moﬁc(’— 7&’/ }NX

AGENDA / LEARNING OUTCOMES

w02

5
What are some alternate designs for networked filesystems? NFS

What is the role of OS in context of new trends like cloud computing?

RECAP

) - TEMS
Tk | A DISTRIBUTED SYS
ot

/G Google

€« > C ff wwwgoogle.com

Google

/,Lowxe, 5 Locak Q(MIC

, NFS ARGHITECTURE

NFS SereY T

/ f Lo
™S [y — Yele 4 VY
M/ s A o

3
Ji//KmUJ nfol aArE) - l ?-
N“ lient ‘\\\\\\‘ - ’JiESL/’ Client
ile

Server

II!E!HIEEII
Client *”’/////' ‘\\\\\\\‘*- Client

o

P

NFS SUMMARY \WY

CBO

NFS handles client and server crashes very well; robust APIs that are:

- stateless: servers don’t remember clients — - Flle Lodle 0 oot qrocks © M
kvq Y 7z
- idempotent: doing things twice never hurts (Lt 7 J W

Ve’
N~ /FWOA«L ,S/ A
Caching and write buffering is harder, especially with crashes
't . AA~
L/> U})M@ V/\/VJ’J"C] 7 W o Wiy becowe V. 01
Problems: _; gfole Codey O do Cafes %&(W“/"ch

— Consistency model is odd (client may not see updates until 3s after file closed)
~ —

— Scalability limitations as more clients call stat() on server b W%WIMé

g o

ALTERNATE DESIGN: ANDREW FILE LSYSTEM (AFS)

Pn\'a/«}i of CMU /A&U W SWL An
oy ﬂgl pohres /,‘}

ppo- - U WHOLE-FILE CACHING

Jowr 15

Upon open, AFS client fetches whole file (even if huge), storing in local memory or disk

—> Upon close, client flushes file to server (if file was written) 1 gl lelloc, &) sey

2 L rTe }0/’7’

ol

Convenient and intuitive semantics:
ya
AF do work only for open/close B M

Reads/writes are local /
voed bl ¢

Use same version of file entire time between open and close
e T

FYM% 7‘”“’[A /wM’u (O w{ﬁ“’{ &%‘ y 47[
e Evon
lond NWB/L/(wred o %J‘A Whole 7£ o %%

e, ju/&/(/ =

File (,IUCYL‘[JM : ol;cw\()

o ‘II‘.’“I WUPDATE VISIBILITY .

w2 R
|2 ballo-< rode 0 W? LI,QWI/F}// A /IQIV(I:I qfaI .
F’,LIL M oweth » L,JL’QYM\L o NI:S/AI‘K
AFS solution: ~ F? = F WIIA? Aﬁ J/\/j
— also flush on ¢l \—DFH W

— buffer whole files on local disk; update file on server atomically

? Iﬁ
Concurrent writes! /F “ﬂ/e/’ Jﬂ\
— Last writer (i.e., last file closer) wins — 0\/1“’ adx

— Never get mixed data on server /
4 g (2 Icﬁ M

Sy wnte (8)

Local FS
cache: B

AFS solution: Tell clients when data is overwritten

— Server must remember which clients have this file open right now

NES oha
-

n?\’&

(T AT
&«

When clients cache data, ask for “callback” from server if changes

— Clients can use data without (checking all the time

‘Server no longer stateless!

ey
o S

Client 2

A
y@;}\a??

/F{M(V of/FS

e/ & \WORKLOAD PATTERNS (1991)
Zay

\J‘”{ 100
W‘L
80+
,-0\ 60+
S
2
=]
o2 401 sesee Trace 1
- = = Trace
ee==+ Trace3
- o ums %raceg
race
20 — — = Trace 6
----- Trace 7
—-—- Trace 8
T B Rt T T s v v

Run Length (bytes)

Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K. Qusterhout
L5 Madowrsw L LFS

WORKLOAD PATTERNS []9_53}1]

L VM @

s ot ot
A
File Usage | Type of Trénsfer [_Accesses (%) ‘ Bytes (%)
Whole-file) (38) (64-91) 89 (46-96)
(Read-orly | Other sequential | 19 (1-33) 5 (2:29)
Random 3 (1-5) 7 (2-37)
Whole-file 67 (50-79) 69 (56-76)
Write-only Other sequential 29 (18-47) 19 (4-27)
Random 4 (2-8) 1 (4-41)
Whole-file 0 (0-0) 0 (0-0)
Eeadlwri; Other sequential 0 (0-0) 0 (0-0)
(Random) 100) (100-100) 100 (100-100)
/ \K_/

Flloper™™
h— O

o\ OCEANSTORE/PAST
oS / /\&@

(

%EN\M W(/
Wide area storage systems / -m T
R e e CB
pyke

Fully decentralized

Built on @stributed hash

tables (DHT)
Al
nd

0S/FILESYSTEMS FOR THE CLOUD?

FROMMID 2006

Rent virtual computers in the “Cloud” L4

On-demand machines, spot pricing

/ A Microsoft Azure @

\

amazon

webservices™

»

AMAZON EC2 (2018)

ot
Machine Memory (GB) Com(%L(l';E)Units Loca(lég;rage Cost / hour
oane) | 03 ! 0 300058
r5d.24xlarge 244 768 +04-96 4x900 NVMe $6.912
@ 2TB 4% Xeon E7 | 3.4TB (SSD) @
p3.l6xlarge 488 GB @@ 0 $24.48

Google data centers in The Dulles, Oregon

DATAGENTER EVOLUTION

Capacity:
~]0000 machines

Bandwidth: Latency:
12-24 disks per node klt@ 256GB RAM cache
- = 1/\/_’_//

. ¥ 5o P oY
16 s 2716 216 M

T
—

Outage in Dublin Knocks Amazon, Microsoft Data
Centers Offline

By:

Dallas-Fort Worth Data Center Update K8
|‘ zlr:EJduir:' Sth, 2009 by Lanham Napier

E W Tweet <0 ﬁ Share [

Official Gmail Blog

News, tips and tricks from Google's Gmail
team and friends.

Alic

for / Message from Rackspace CEQ L:
map July 9, 2009

MICl Rackspace Community,

Some of our customers have been d
. 1 il i

Worth Data Center Others of youm: MoOre on today's Gmail issue
interruption like this is not up toourl

such incidents from occurring in the ' posted: Tu

Posted by

Gmail's w
® people rel
z problemv

xdawere Aazon EC2 and Amazon RDS Service Disruption

a list of th

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

~thousands of hard drive failures 3
(

Long distance links: wild dogs sharks, dead horses, dw etc.

~ JEFF DEAN @ GOOGLE

FEEDBACKI ~ L, https://aefis.wisc.edu/

|.What was one idea or concept that you learnt in this course that you appreciated the most?

2.What are some future opportunities that you look forward to based on content from 5377

ALTERNATE DESIGN: GOOGLE FILE SYSTEM (GFS)

~ LpoS
&% Aowr (e O,Q/abé

GFS: WORKLOAD ASSUMPTIONS

Al f e)
—— “Modest” number of large files Cv,g- L’“’ﬁe IR D{/ b }

Two kinds of reads: Large Streaming and small random U”X E
~— —

—

Writes: Many large, sequential writes. No random

.

High bandwidth more important than low latency
- - -

GFS:DESIGN -

/\/-)
. 7 7
Application , FS master /foo/bar
- Single Master for le name, chunk index) _ =
= GFS client |/ File namespace |, chunk 2ef0

Mmetadatz (chunk handle, ’

chunk locations) Lege
- Chunkservers for —

—_—

Instructions to chunkserver

storing data

(chunk handle, byte range) 7\Chunkser;er state
S chunkserver GFS chunkserve
- No POSIX API ! chunk data —

I e e oo
() - N N

[N

Figure 1: GFS Architecture

w%?xwm Lke Mpldhie

The Datacenter Needs an Operating System

r\/?/Ol/O

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction

Clusters of commodity servers have become a major
computing platform, powering not only some of today’s
most popular consumer applications—Internet services
such as search and social networks—but also a growing
number of scientific and enterprise workloads [2]. This
rise in cluster computing has even led some to declare
that “the datacenter is the new computer” [16, 24]. How-
ever, the tools for managing and programming this new
computer are still immature. This paper argues that, due
to the growing diversity of cluster applications and users,
the datacenter increasingly needs an operating system. !

and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

In addition, clusters are serving increasing numbers of
concurrent users, which require responsive time-sharing.
For example, while MapReduce was initially used for a
small set of batch jobs, organizations like Facebook are
now using it to build data warehouses where hundreds of
users run near-interactive ad-hoc queries [29].

Finally, programming and debugging cluster applica-
tions remains difficult even for experts, and is even more
challenging for the growing number of non-expert users

. A . T W S 1. I PR (. [1.

DATACENTER OPERATING SYSTEMS
Resource sharing — WMH

‘ kubernetes 4 ;’, hadﬂﬂ
Data sharing — Tkt el 5
5
o amazon |S3

Programming Abstractio{: ,
APACHE S Q)
Debugging 05

™
<

0S (Lo | os M)\ | =St

COURSE SUMMARY

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization
2. Concurrency

3. Persistence

VIRTUALIZATION

Make each application believe it has each resource to itself
EPU and Memorﬂ

/% \/iw{//"yli MD

Abstraction: Process API,Address spaces

Mechanism:

Limited direct execution, CPU scheduling

Address translation (segmentation, paging, TLB)

-

Policy: MLFQ, LRU etc.
N VS

CONCURRENCY

Events occur simultaneously and may interact with one another
Need to //./L\(QF‘JA

Hide concurrency from iniefwnt processes 9 }7”% M);/a,

- — /
Manage concurrency with interacting processes ook W

Provide abstractions (locks, semaphores, condition variables etc.)

Correctness: mutual exclusion, ordering

Performance: scaling data structures, fairness

Common Bugs!

L Do adlocks |

PERSISTENGE

Managing devices: key role of OS!
[Eard disk driveﬂ% Povite
Rotational, Seek, Transfer time

Disk scheduling: FIFO, SSTF SCAN

Filesystems API ' l
File descriptors, Inodes — k0o
Directories

Hardlinks, softlinks

PERSISTENGE

Very simple FS

Inodes, Bitmaps, Superblock, Data blocks
FFS

Placement in groups, Allocation policy
LFS

Write optimized, Garbage collection
Arbage collectior

Journaling, FSCK

NFS: Partial failures retry, cache consistency

LOOKING BACK, LOOKING FORWARD

M?
Thos ov totefp g ook | Juture offor 5
‘- 4 [nor N
7 Conurrey cs WA La;w)

LI

NEXT COURSES

{00 b sz,(?_

. 0S
MM’U; e n1Cs

NW HOV/J/‘*MM’ SSDs //\/\/Me‘A

CS 640: Computer Networks

CS 736:Advanced Operating Systems i

\) Dib’k‘”‘ wd A(a,«lw
CS 739:Advanced Distributed Systems ———

05 /Pv o defaliden
CS 744: Big Data Systems —

—_—

THANK YOU!

