
REVIEW, SUMMARY

Shivaram Venkataraman
CS 537, Spring 2020

Last
lecture
!

ADMINISTRIVIA

Project 5 grades on the way.
Final Exam:

Everything up to including NFS.
May 4th, 10:05am-12:05pm

No discussion today!

→ Regrade request by early
next week .

→ Monday ! !
← up to & including the previous

lecture

↳ Piazza

↳ study 1 Practice for final

AGENDA / LEARNING OUTCOMES

What are some alternate designs for networked filesystems?

What is the role of OS in context of new trends like cloud computing?

NFS e
wid fo,

RECAP

DISTRIBUTED SYSTEMSckI#errer[]

NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

Ahome is local disk

/ T -

→ Inf, → remote NFS
sewer centralised

nfs file
server

freed Intel a.
txt) .

. - i y
Twe

t
storing
files

NFS Summary

NFS handles client and server crashes very well; robust APIs that are:

- stateless: servers don’t remember clients
- idempotent: doing things twice never hurts

Caching and write buffering is harder, especially with crashes

Problems:

– Consistency model is odd (client may not see updates until 3s after file closed)
– Scalability limitations as more clients call stat() on server

"

÷÷⇒iX
→

File handle & client tracks offsets
⇐

client retry requests to
~ handle failure of sewer

-

↳ Finikility → when do writes -become visible

- State caches → when do caches get
invalidated

-

-

Ts attribute cache

duration

ALTERNATE DESIGN: ANDREW FILE SYSTEM (AFS)
- t
Projet at CMU still in • use in

our lab machines ! !

Whole-File Caching

Upon open, AFS client fetches whole file (even if huge), storing in local memory or disk

Upon close, client flushes file to server (if file was written)

Convenient and intuitive semantics:

AFS needs to do work only for open/close
Reads/writes are local
Use same version of file entire time between open and close

Open - close

semantics

- - --

→ zrwea.d.fetdlo.sk) rer

Et einer . .
@ #hello. c

Prost reads (writes incur no network traffic
AD

Conde might need to fetch whole file even if you
- update just a few bytes .

Update Visibility

AFS solution:

– also flush on close

– buffer whole files on local disk; update file on server atomically

Concurrent writes?
– Last writer (i.e., last file closer) wins

– Never get mixed data on server

File descriptor fd : open
Fasa ÷:÷÷r> ftp.ee.mu. me

Trie÷i*÷D,
- "

m Tanning
- -

- -
-

→ tie
.

writer hot ,writer ,

ok? 7am.
ba ¥7

-aim ME rn.
D%F¥F
c-

Stale Cache

AFS solution: Tell clients when data is overwritten
– Server must remember which clients have this file open right now

When clients cache data, ask for “callback” from server if changes
– Clients can use data without checking all the time

Server no longer stateless!

Local FS

Server

cache: B

Client 2

NFS
cache: A

NFS diet

win:&: " aeiaartmsewer°

lqqwnrdidad.ae!
a.name#iad-ADrolgYIgynjgf.,ea/write ← dads ? ?

y
O

#
Trade- offs

T
'redfish-

WORKLOAD PATTERNS (1991)lhomefshiva.am
-

"

"
""

T.a.name
↳ Madison IFS

WORKLOAD PATTERNS (1991)

O
c TEE

"
⇐= angie

C 3
c , @

OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash
tables (DHT)

rod on
' O

N

Blender o -

Ko

-

Forage
systems

>
C

"

in.µ¥j
'M

" '

file sharing ?
←

Bittorrent

OS/FILESYSTEMS FOR THE CLOUD?

From Mid 2006

Rent virtual computers in the “Cloud”

On-demand machines, spot pricing

~ Is

o -
-

Amazon EC2 (2018)

Machine Memory (GB)
Compute Units

(ECU)
Local Storage

(GB)
Cost / hour

t2.nano 0.5 1 0 $0.0058

r5d.24xlarge 244 768 104 96 4x900 NVMe $6.912

x1.32xlarge 2 TB 4 * Xeon E7 3.4 TB (SSD) $13.338

p3.16xlarge 488 GB
8 Nvidia Tesla
V100 GPUs

0 $24.48

ordered --

O
- - -

I O O

O

DatacenteR

Google data centers in The Dulles, Oregon

miff toothed

•

Datacenter Evolution

Capacity:
~10000 machines

Bandwidth:
12-24 disks per node

Latency:
256GB RAM cache12 TB

- to ~
or

FB or 2 qz
I

50 TB

2713 RAM

0

Jeff Dean @ Google

partial
faith

is not but
rare
common

Sr
- - -

https://aefis.wisc.edu/FEEDBACK!

1. What was one idea or concept that you learnt in this course that you appreciated the most?

2. What are some future opportunities that you look forward to based on content from 537?

NH 't

ALTERNATE DESIGN: GOOGLE FILE SYSTEM (GFS)
N 2003

open source too6

GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. No random

High bandwidth more important than low latency

(vs . large number of small files)
→
-

Building a
web

- - search
index

- - MapReduce
workloads

- -

GFS: DESIGN

- Single Master for
metadata

- Chunkservers for
storing data

- No POSIX API !
- No Caches!

O

metadata

⇒ ÷¥¥
.

only being -wsedthpplicatims like MapReduce

v 2010

DATACENTER OPERATING SYSTEMS

Resource sharing

Data sharing

Programming Abstractions

Debugging

→ Scheduling
→ pinning:L.

c) L)
a-
Dosing tags toss

COURSE SUMMARY

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

VIRTUALIZATION

Make each application believe it has each resource to itself
CPU and Memory

Abstraction: Process API, Address spaces
Mechanism:

Limited direct execution, CPU scheduling
Address translation (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.

-
-

E 3

~-

→ virtual memory

-

- -

-

CONCURRENCY

Events occur simultaneously and may interact with one another
Need to

Hide concurrency from independent processes
Manage concurrency with interacting processes

Provide abstractions (locks, semaphores, condition variables etc.)
Correctness: mutual exclusion, ordering
Performance: scaling data structures, fairness
Common Bugs!

-

-- -

- fo "÷
data

- - -

-
-

↳ Deadlocks !

PERSISTENCE

Managing devices: key role of OS!
Hard disk drives

Rotational, Seek, Transfer time
Disk scheduling: FIFO, SSTF, SCAN

Filesystems API
File descriptors, Inodes
Directories
Hardlinks, softlinks

[]- Device

→
metadata

PERSISTENCE

Very simple FS
Inodes, Bitmaps, Superblock, Data blocks

FFS
Placement in groups, Allocation policy

LFS
Write optimized, Garbage collection

Journaling, FSCK
NFS: Partial failures retry, cache consistency

=
-

LOOKING BACK, LOOKING FORWARD
Idea or concept you learnt future opportunities ?

→ Concurrency is important ! grad warm
(7-44)

Security as a career

Hibernates
Is OS

research ?

done

NEXT COURSES

CS 640: Computer Networks

CS 736: Advanced Operating Systems

CS 739: Advanced Distributed Systems

CS 744: Big Data Systems

p
1000 Cone?

→
Mutt core Os

→
New Hardware III. Irvine 's

→

g.
#

Distributed Algorithms

OS for a
datacenter

THANK YOU!

