(‘\

X7
VIRTUALIZATION: CPU TO MEMORY

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

Project 1a: DONE!?

How to use slip days? (Piazza)

Project Ib is out, due Feb 5% (Next Wednesday) a4 [0 p~
Discussion section —2 ¢:39)m TM&
- xv6 code walk through

- How to use gdb

AGENDA / LEARNING OUTCOMES

CPU virtualization
Recap of scheduling policies
Work through problems

Memory virtualization
What is the need for memory virtualization!?

How to virtualize memory!?

RECAP: GPU VIRTUALIZATION

RECAP: SCHEDULING MECHANISM

Process: Abstraction to virtualize CPU

Use time-sharing in OS to switch between processes

Limited Direct Execution

Use \gystem callslto run access devices etc. from user mode

Context-switch using interrupts for multi-tasking
e

l

TimeY

RECAP: METRICS —> POLICIES

Turnaround time = completion_time - arrival_time

FIFO: First come, first served A WM Mok
SJF: Shortest job first \) 0.1 S
SCTF: Shortest completion time first Y

RECAP: METRICS —> POLICIES

Response time = first_run_time - arrival_time

RR: Round robin with time slice

Minimizes response time but could increase turnaround?

MULTI-LEVEL FEEDBACK QUEUE

MMUZHQ Qnemers § ot rues for fons
Sl L WWROEKANPLES) €

((uv'l M‘t

o [High Priority] j-»@ ‘ Rules for MLFQ
> v L @ Rule I:If priority(A) > Priority(B) /dmv’%

Q6 A runs 1”‘""" L? 2

Rule 2: If priority(A) = Prlorlty(B)

) Q5
: @—'@ A & B run in RR Q’@
' Q3

Rule 3: Processes start at top priority
Q2 Rule 4: If job uses whole slice, demote process.

OOILow Priority] Q1 —»@ If not stay at level
il

ONE LONG JOB

D ws Q2

1Dms QI

Qo

s .o INTERAGTIVE PROCESS JOINS . 10
:

Qi-
QL - >

Q1 -8
al

A @D — A ‘

®0 % (H;Quel'\'g: Awﬁ’.
A QO | o TG . et
WQULQ ’(g < 0 g W(
pR TS F Q . KR

'rg - T.S

@(. LOms A\% arre
¢

0t 10 g4 ‘e (A 8

\omd {om’ lomé

pid),

MLFQ PROBLEMS?

B, 8’1 B o0

What is the problem
with this schedule ?

Ma‘f‘/&ﬁ‘m

AVOIDING STARVATION

Q2 Q2
I """""""""""""""""""" I """" l """ @ ------ l ------ J Rule 5:After some time
Q1 5 Q1 j 3 I3 g period S, move all the
I I @ I @ @ @ jobs in the system
.. ... tothe topmost queue.
Qo QO

. = § b0
50 10
%

GAMING THE SCHEDULER ?

p .
Q2
v
A Job could trick scheduler by doing I/O
""""""""""""""""""""" just before time-slice end
othes TIO
Ql PA ,F\MW [
___ ‘YQ)IO"M S Q.
\
e QUL
0 50 100 150 2(

\

QO

GAMING THE SCHEDULER ?

A

|

2(

Job could trick scheduler by doing I/O just
before time-slice end

Rule 4*: Once a job uses up its time
allotment at a given level (regardless of

how many times it has given up the CPU),
its priority is reduced

https://tinyurl.com/cs537-sp20-quiz5
o A 4D

ok

L torrect!

[=]

Y WwR 1 E
WY -
?F'v'b Jobs Runtime Arrival Time Jobs Runtime Arrival Time
o®
)n b A 100 0 Job A 100 0
JobB 10 50 D
Job B 10 50 P 6
Job C 20 70 9":0"‘ 60 41,5)0
M'ke A ‘YW\ 1 Od—o %o
Job A .IIU‘)B Job A R f C'YV‘:E 4’
[High Prioirity] Q3 . ,g [High Prioirity] Q3 . S ‘a g
« 0. I —
. e T
[Low Priority] Qo —-i i

[Low Priority] Qo

(
{
0O 10 20 30 40 5

Tob A

(nod run")

10

20 30 40 50 60 70 80 90 100

CPU SUMMARY

Mechanism
Process abstraction
System call for protection

Context switch to time-share

Policy
Metrics: turnaround time, response time
Balance using MLFQ

VIRTUALIZING MEMORY

BACK IN THE DAY..

OKB

Operating System
(code, data, etc.)

64KB

Uniprogramming: One process runs at a time

Current Program A
(code, data, etc.) w&& VA fla A’Lfk

max

MULTIPROGRAMMING GOALS

« Transparency: Process is unaware of sharing
- Protection: Cannot corrupt OS or other process memory
~ Efficiency: Do not waste memory or slow down processes

~ Sharing: Enable sharing between cooperating processes

OKB

1KB

2KB

15KB

16KB

ABSTRACTION: ADDRESS SPACE

P“YDCUVS V1w

Program Code

Heap

(free)

Stack

otk
v

OKB

64KB

128KB

192KB

256KB

320

384KB

448KB

512KB

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

WHAT IS IN ADDRESS SPACE?

h
ok vy §3 o/ eaxn
Program Code the code segment: / Calla, add

where instructions live 5
1KB

—»

—

the heap segment:

Heap contains malloc’d data W\MXOC (')) \(\0«4)

dynamic data structures

2KB \ (it grows downward)
W
i e N N
1777 ™) mﬁcfp‘ﬁﬁ

(free) P Dynamic: Stack and Heap

Static: Code and some global variables

(it grows upward) L QM&
the stack segment: }ﬁf&l »\/a'f
15KB contains local variables

Stack arguments to routines, a\vyﬁww\wﬂ) "{

return values, etc.

16KB

STACK ORGANIZATION

M;O"O
L\FO ’WL\ Pointer between allocated and free space
alloc(A); :
Allocate: Increment pointer
alloc(B); Free: Decrement pointer
alloc(C);

— No fragmentation!

alloc(D); No Mﬁ, Yqj;ws
free(D); 77 .
74 Sk ave
. W 85577
free(B); & o
free(A); A
Shack —> 15KkB f
Stack '

16KB

WHAT GOES ON STACK? ety comnti

« 86
main () { .
int A = 9; &— fec \/M‘M
foo(A); |
printf(“A: %d\n”, A); K
} K_— Ox'{ﬁ*ﬂ\ Z-E
void foo (iDE«Zl { 9
int A - Lo o, __i,,,[
Z = 5; '/?WM—
printf(“A: »d Z: %d\n”, A, Z); ‘ i
} W AZO

YV\M

> \"Q/b/d’\ valame
gﬂw’vﬂ Mack

HEAP ORGANIZATION

Allocate from any random location: malloc(), new() etc.
e Heap memory consists of allocated and free areas (holes)

* Order of allocation and free is unpredlctable M//('“ (127

k"
|6 bytes

24 bytes

krey”

| 2bytes
|6 bytes

Free

Alloc

Free

Alloc

] e (14)
LS Maoc @4)
Lorte (&)
[ver (c¢)

N O Op F

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *xargv[]) {

int x;

X

X + 3;

']
VG eee——aas

MEMORY ACCESS

0x10: movl Ox8(%rbp), %edi ‘”9@*"”

ox13:addl $0x3, %edi ~

0x19: movl %edi, Ox8(%rbp)
&_)mwzz

%rbp is the base pointer:
points to base of current stack frame

MEMORY ACCESS

Initial %rip = 0x10
%rbp = 0x200

0x10: movl ©x8(%rbp), %edi
Ox13: addl $0x3, %edi

0x19: movl %edi, ©x8(%rbp)

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter
P P prog

et Lk of Ox13

Evec .

Fofch ik ok Ox1

Fova. Shore ot ax
O« 208

MEMORY ACCESS

Fetch instruction at addr Ox 10

Exec:
load from addr 0x208

Initial %rip = 0x10
%rbp = 0x200

» ox10: movl ©x8(%rbp), %edi
Ox13: addl $0x3, %edi
0x19: movl %edi, ©x8(%rbp)

Fetch instruction at addr Ox |3
Exec:
No memory access

%rbp is the base pointer:

points to base of current stack frame Fetch instruction at addr Ox19
Exec:

%Fip is instruction pointer (or program counter) store to addr 0x208

QUIZ 6 https://tinyurl.com/cs537-sp20-quizé

int x;
Z—int main(int argc, char *argv[]) {
int y; &
int* z = malloc(sizeof(int));& Possible locations:
} static data/code, stack, heap
X /({,/qtc a(a/’a/ COCIISL
main &_70((,
y Macle

z Mac k

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries
How to avoid collisions?

Possible Solutions for Mechanisms (covered today):
|. Time Sharing
2. Static Relocation
3. Base
4. Baset+Bounds

Program

TIME SHARE MEMORY: EXAMPLE

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!
At same time, space of memory is divided across processes
Remainder of solutions all use space sharing

2) STATIC RELOCATION

Idea: OS rewrites each program before loading it as a process in memory
Each rewrite for different process uses different addresses and pointers
Change jumps, loads of static data

0x1010: movl Ox8(%rbp), %edi
0x1013: addl $0x3, %edi

rewy 0x1019: movl %edi, 0x8(%rbp)

0x10: movl Ox8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, Ox8(%rbp)

0x3010:movl Ox8(%rbp), %edi
rewrite 0x3013:addl $0x3, %edi
0x3019:movl %edi, @Ox8(%rbp)

STATIC: LAYOUT IN MEMORY

4 KB
process |

8 KB

12 KB
process 2

16 KB

Progsram Code

Heap

free)

tack

Progsram Code

Heap

free)

Etack

0x1010:
0x1013:
0x1019:

0x3010:
0x3013:
0x3019:

mov L
addl
mov L

mov 1
addl
mov 1

0x8(%rbp), %edi
$0x3, %edi
%edi, 0x8(%rbp)

0x8(%rbp), %edi
$0x3, %edi
%edi, 0x8(%rbp)

STATIC RELOCATION: DISADVANTAGES

No protection
— Process can destroy OS or other processes

— No privacy

Cannot move address space after it has been placed

— May not be able to allocate new process

3) DYNAMIC RELOCATION

Goal: Protect processes from one another
Requires hardware support
— Memory Management Unit (MMU)
MMU dynamically changes process address at every memory reference
— Process generates logical or virtual addresses (in their address space)

— Memory hardware uses physical or real addresses

Process runs here OS can control MMU

Memory

Logical address Physical address

HARDWARE SUPPORT FOR DYNAMIC RELOCATION

Privileged (protected, kernel) mode: OS runs
— When enter OS (trap, system calls, interrupts, exceptions)
— Allows certain instructions to be executed
(Can manipulate contents of MMU)

— Allows OS to access all of physical memory

User mode: User processes run

— Perform translation of logical address to physical address

IMPLEMENTATION OF DYNAMIC RELOCATION: BASE REG

Translation on every memory access of user process
MMU adds base register to logical address to form physical address

MMU

logical
address

physical
address

DYNAMIC RELOCATION WITH BASE REGISTER

Translate virtual addresses to physical by adding a fixed offset each time.

Store offset in base register

Each process has different value in base register

Dynamic relocation by changing value of base register!

0 KB
| KB
2 KB
3 KB

4 KB
5 KB

6 KB

VISUAL EXAMPLE OF
DYNAMIC RELOCATION:
BASE REGISTER

Virtual
Pl:load 100, R

P2:load 100, R
P2:load 1000, R

Pl:load 100, R

0 KB Virtual Physical
KB Pl:load 100,RI load 1124, RI
P2:load 100,RI load 4196, R
2 KB P2:load 1000, RI load 5096, R
Pl:load 1000,RI load 2024, R
3 KB
4 KB
5 KB Can P2 hurt PI?
Can Pl hurt P2?
6 KB

How well does dynamic relocation do with base register for protection?

0 KB Virtual Physical
KB Pl:load 100,R1 load 1 124,R1
P2:load 100,R1 load 4196, R1
2 KB P2:load 1000,R1 load 5096, R
3 KB Pl:load 100,R1 load 2024, R 1
Pl:store 3072, Rl store 4096,R| (3072 + 1024)
4 KB

P2
6 KB

How well does dynamic relocation do with base register for protection?

4) DYNAMIC WITH BASE+BOUNDS

|dea: limit the address space with a bounds register
Base register: smallest physical addr (or starting location)
Bounds register: size of this process’s virtual address space

— Sometimes defined as largest physical address (base + size)

OS kills process if process loads/stores beyond bounds

IMPLEMENTATION OF BASE+BOUNDS

Translation on every memory access of user process
* MMU compares logical address to bounds register
if logical address is greater, then generate error
MMU adds base register to logical address to form physical address

logical
address

physical
address

0 KB
| KB I base register
2 KB bounds register
3 KB
4 KB

5 KB

6 KB

0 KB Virtual Physical

KB Pl:load 100, R load 1124,R1
P2:load 100, R load 4196, R 1

2 KB P2:load 1000, R load 5196, R
Pl:load 100, R load 2024, R1

3KB Pl:store 3072, R1

4 KB

P2
5|<B- Can Pl hurt P2?
6 KB

MANAGING PROCESSES WITH BASE AND BOUNDS

Context-switch: Add base and bounds registers to PCB
Steps
— Change to privileged mode
— Save base and bounds registers of old process
— Load base and bounds registers of new process
— Change to user mode and jump to new process

Protection requirement
* User process cannot change base and bounds registers
* User process cannot change to privileged mode

BASE AND BOUNDS ADVANTAGES

Provides protection (both read and write) across address spaces
Supports dynamic relocation
Can place process at different locations initially and also move address spaces

Simple, inexpensive implementation: Few registers, little logic in MMU
Fast: Add and compare in parallel

BASE AND BOUNDS DISADVANTAGES

Disadvantages

— Each process must be allocated contiguously in physical memory

Must allocate memory that may not be used by process

— No partial sharing: Cannot share parts of address space

o

Heap
v

t

n_|

NEXT STEPS

Project |b: Out now, due Feb 5%
Thursday discussion
xv6 introduction, walk through

Project |b tips

Next week:Virtual memory segmentation, paging and more!

