
VIRTUALIZATION: CPU TO MEMORY

Shivaram Venkataraman
CS 537, Spring 2020

ADMINISTRIVIA

- Project 1a: DONE!?
- How to use slip days? (Piazza)

- Project 1b is out, due Feb 5th (Next Wednesday)
- Discussion section

- xv6 code walk through
- How to use gdb

AGENDA / LEARNING OUTCOMES

CPU virtualization
Recap of scheduling policies
Work through problems

Memory virtualization
What is the need for memory virtualization?
How to virtualize memory?

RECAP: CPU VIRTUALIZATION

RECAP: SCHEDULING MECHANISM

Process: Abstraction to virtualize CPU
Use time-sharing in OS to switch between processes

Limited Direct Execution
Use system calls to run access devices etc. from user mode
Context-switch using interrupts for multi-tasking

RECAP: METRICS à POLICIES

Turnaround time = completion_time - arrival_time

FIFO: First come, first served
SJF: Shortest job first
SCTF: Shortest completion time first

RECAP: METRICS à POLICIES

Response time = first_run_time - arrival_time

RR: Round robin with time slice
Minimizes response time but could increase turnaround?

MULTI-LEVEL FEEDBACK QUEUE

MLFQ EXAMPLE

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B Rules for MLFQ

Rule 1: If priority(A) > Priority(B)
A runs

Rule 2: If priority(A) == Priority(B),
A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process.

If not stay at level

ONE LONG JOB

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

INTERACTIVE PROCESS JOINS

MLFQ PROBLEMS?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

What is the problem
with this schedule ?

AVOIDING STARVATION

Rule 5: After some time
period S, move all the
jobs in the system
to the topmost queue.

GAMING THE SCHEDULER ?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Job could trick scheduler by doing I/O
just before time-slice end

GAMING THE SCHEDULER ?

Q2

Q1

Q0

0 50 100 150 20

Q2

Q1

Q0

Job could trick scheduler by doing I/O just
before time-slice end

Rule 4*: Once a job uses up its time
allotment at a given level (regardless of
how many times it has given up the CPU),
its priority is reduced

QUIZ 5 https://tinyurl.com/cs537-sp20-quiz5

CPU SUMMARY

Mechanism
Process abstraction
System call for protection
Context switch to time-share

Policy
Metrics: turnaround time, response time
Balance using MLFQ

VIRTUALIZING MEMORY

BACK IN THE DAY…

max

64KB

0KB

Current Program
(code, data, etc.)

Operating System
(code, data, etc.)

Uniprogramming: One process runs at a time

MULTIPROGRAMMING GOALS

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

ABSTRACTION: ADDRESS SPACE

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc. 512KB

448KB

384KB

320KB

256KB

192KB

128KB

64KB

0KB

(free)

(free)

(free)

(free)

Operating System
(code, data, etc.)

Process A
(code, data, etc.)

Process B
(code, data, etc.)

Process C
(code, data, etc.)

WHAT IS IN ADDRESS SPACE?

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Static: Code and some global variables

Dynamic: Stack and Heap

STACK ORGANIZATION

alloc(A);
alloc(B);
alloc(C);
free(C);
alloc(D);
free(D);
free(B);
free(A);

Pointer between allocated and free space
Allocate: Increment pointer
Free: Decrement pointer

No fragmentation!

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

WHAT GOES ON STACK?

main () {
int A = 0;
foo(A);
printf(“A: %d\n”, A);

}
void foo (int Z) {

int A = 2;
Z = 5;
printf(“A: %d Z: %d\n”, A, Z);

}

HEAP ORGANIZATION
Allocate from any random location: malloc(), new() etc.

• Heap memory consists of allocated and free areas (holes)
• Order of allocation and free is unpredictable

Free

Free

Alloc

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

MEMORY ACCESS

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 3;

}

0x10:movl 0x8(%rbp), %edi
0x13:addl $0x3, %edi
0x19:movl %edi, 0x8(%rbp)

%rbp is the base pointer:
points to base of current stack frame

MEMORY ACCESS

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter)

MEMORY ACCESS

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter)

Fetch instruction at addr 0x10
Exec:

load from addr 0x208

Fetch instruction at addr 0x13
Exec:

no memory access

Fetch instruction at addr 0x19
Exec:

store to addr 0x208

QUIZ 6
int x;
int main(int argc, char *argv[]) {
int y;
int* z = malloc(sizeof(int)););

}

Address Location

x

main

y

z

*z

Possible locations:
static data/code, stack, heap

https://tinyurl.com/cs537-sp20-quiz6

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries
How to avoid collisions?

Possible Solutions for Mechanisms (covered today):
1. Time Sharing
2. Static Relocation
3. Base
4. Base+Bounds

code
data
Program

Memory

TIME SHARE MEMORY: EXAMPLE

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!
At same time, space of memory is divided across processes
Remainder of solutions all use space sharing

2) Static Relocation

Idea: OS rewrites each program before loading it as a process in memory
Each rewrite for different process uses different addresses and pointers
Change jumps, loads of static data

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010:movl 0x8(%rbp), %edi
0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

rewrite

rewrite

(free)

Program Code

stack

Heap

(free)

Program Code

stack

Heap

(free)

(free)

(free)
4 KB

8 KB

12 KB

16 KB

process 1

process 2

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010:movl 0x8(%rbp), %edi
0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

Static: Layout in Memory

Static Relocation: Disadvantages

No protection
– Process can destroy OS or other processes
– No privacy

Cannot move address space after it has been placed
– May not be able to allocate new process

3) Dynamic Relocation
Goal: Protect processes from one another
Requires hardware support

– Memory Management Unit (MMU)
MMU dynamically changes process address at every memory reference

– Process generates logical or virtual addresses (in their address space)
– Memory hardware uses physical or real addresses

CPU MMU
Memory

Process runs here OS can control MMU

Logical address Physical address

Hardware Support for Dynamic Relocation
Privileged (protected, kernel) mode: OS runs

– When enter OS (trap, system calls, interrupts, exceptions)
– Allows certain instructions to be executed

(Can manipulate contents of MMU)
– Allows OS to access all of physical memory

User mode: User processes run
– Perform translation of logical address to physical address

Implementation of Dynamic Relocation: BASE REG
Translation on every memory access of user process
MMU adds base register to logical address to form physical address

base moderegisters
32 bits 1 bit

mode
=

user?

no

yes

+
base

logical
address

physical
address

MMU

Dynamic Relocation with Base Register
Translate virtual addresses to physical by adding a fixed offset each time.

Store offset in base register

Each process has different value in base register
Dynamic relocation by changing value of base register!

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

VISUAL Example of
DYNAMIC RELOCATION:
BASE REGISTER

P1: load 100, R1

Virtual

P2: load 100, R1

P2: load 1000, R1

P1: load 100, R1

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5096, R1
P1: load 1000, R1 load 2024, R1

Can P2 hurt P1?
Can P1 hurt P2?

How well does dynamic relocation do with base register for protection?

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5096, R1
P1: load 100, R1 load 2024, R1
P1: store 3072, R1 store 4096, R1 (3072 + 1024)

How well does dynamic relocation do with base register for protection?

4) Dynamic with Base+Bounds

Idea: limit the address space with a bounds register

Base register: smallest physical addr (or starting location)
Bounds register: size of this process’s virtual address space

– Sometimes defined as largest physical address (base + size)

OS kills process if process loads/stores beyond bounds

Implementation of BASE+BOUNDS
Translation on every memory access of user process
• MMU compares logical address to bounds register

if logical address is greater, then generate error
• MMU adds base register to logical address to form physical address

base modeboundsregisters
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

bounds register

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

Managing Processes with Base and Bounds

Context-switch: Add base and bounds registers to PCB
Steps

– Change to privileged mode
– Save base and bounds registers of old process
– Load base and bounds registers of new process
– Change to user mode and jump to new process

Protection requirement
• User process cannot change base and bounds registers
• User process cannot change to privileged mode

Base and Bounds Advantages
Provides protection (both read and write) across address spaces
Supports dynamic relocation

Can place process at different locations initially and also move address spaces

Simple, inexpensive implementation: Few registers, little logic in MMU
Fast: Add and compare in parallel

Base and Bounds DISADVANTAGES

Disadvantages
– Each process must be allocated contiguously in physical memory

Must allocate memory that may not be used by process

– No partial sharing: Cannot share parts of address space

Stack

Code

Heap

0

2n-1

NEXT STEPS

Project 1b: Out now, due Feb 5th

Thursday discussion
xv6 introduction, walk through
Project 1b tips

Next week: Virtual memory segmentation, paging and more!

