Anetley Am/ewz, 7@“/5 ﬂ(07 /

CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Spring 2023



ADMINISTRIVIA
— e iz e

- Project 4 is out. Due March 6th

- Project 2 grades very soon

- Midterm | details: Piazza, Canvas

L% next  wegk
(’{ﬁ.(‘ﬁ\ e F Yd?'[o/"’“) /

— OMCQ_ ﬂwvﬂfé = Q/"j{ ﬂl% 3 \BO%Y’/)



AGENDA / LEARNING OUTCOMES

Virtual memory: Summary
Concurrency
What is the motivation for concurrent execution?

What are some of the challenges?



RECAP



SWAPPING

OS goal: Support processes when not enough physical memory
— Single process with very large address space

— Multiple processes with combined address spaces

/ Tromsparency
User code should be independent of amount of physical memory

— Correctness, if not performance



CLOCK ALGORITHM —

Hardware bt @ Qj«ﬁ}/};@\’ 2
— Keep use (or reference) bit for each page frame . oy
— When page is referenced: set use bit — MWMW —
\Jpe = xO
Operating System vihom

L)
— Page Replacement: ]AL\ @ P
* Keep pointer to last examined page frame @ - =
* Traverse pages in circular buffer Ve @U&" \E

* Clear use bits as we search
* Stop when find page with already cleared use bit, replace this page



CLOCK: LOOK FOR A PAGE

Use=}f 0 Use=10 Use=0 Um;,é Use=|

Physical Mem: Q I %) 3
¢ 1 !
clock hand

—> Evict page 2 (not recently used). Clarification:
Bring in page 4 Where does the hand start from next?
Clarification: - Pefoe e ewicher

Use bit for page 4? o n
- My & 4 “ﬁw

- feferere pog-

https://courses.cs.washington.edu/courses/csep544/99au/minirel/bufmgr.html

MeVe c/{pdﬂw e



CLOCK EXTENSIONS |
ko vtk

! > A ‘r\J
— Intuition: Expensive to run replacement algorithm and to write single block to disk

— Find multiple victims each time and track(fr—e_e_lga._; a st eqt WCJ
e — eer) s

Replace multiple pages at once

Use dirty bit to give preference to dirty pages

— Intuition: More expensive to replace dirty pages
Dirty pages must be written to disk, clean pages do not

A r\)

— Replace pages that have use bit and dirty bit cleared

—T><
'ET'C\Té




GLOBAL VS LOCAL REPLAGEMENT

P2 F

|
What if a victim page belongs to another process!? m E jj

» Fixed space algorithms ~ {roces it 2 poge (P#ZD e
— each process is given a limit of pages it can use

fhy e
— when it reaches its limitjit replaces from its own pagesi N ?L
pr vt

— local replacement: some process may do well, others suffer
* Variable space algorithms L

: : AL
— processes’ set of pages grows and shrinks dynamically o f; ovick
— global replacement: one process can ruin it for the rest Glo 03
-t S P2 o

— Clock is global replacement



4

' THRASHING

T/o ﬁﬂera/kgv'

* As page fault rate goes up, processes get suspended on page out

queues for the disk

* System may try to optimize performance by WS

* Starting new jobs will reduce the number of page frames available to

each process, increasi
* System throughput pl

Solution? Stop cPU

. Utilization
running some
processes

AOM — ey
fYDW@

ng the page fault requests

Lnges f? otk ol MM[Z
[T - Joulh

A urber of

Degree of Multiprogramming - )
abve ’Y'\’DC@XS



SUMMARY: VIRTUAL MEMORY

Abstraction:Virtual address space with code, heap, stack
Address translation
- Contiguous memory: base, bounds, segmentation
segmentalio
- Using fixed sizes pages with page tables
Challenges with paging

- Extra memory references: avoid with TLB

=

- Page table size: avoid with multi-level paging, inverted page tables etc.

L= ANEEREES

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)




REVIEW: EASY PIECE 1
M/(OHQTM 1

Context Switch
CPU =

/ T Schedulers

Virtualization Allocation

4: Segmentation TLBs
Memory —» Multilevel
"~ Paging

—> Swapping




CONGURRENCY



MOTIVATION FOR CONCURRENCY

Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, aaGHz(boodsto G%.:)an)

cores 4.

muc«omoomwenz
Intel Xeon 4 cores 3.7 GHz (Boost to
WXooMcomsecHz(Booﬂtoaoeﬂz)

100,000
Intel Xeon 4 cores, 3.3 GHz (boost 1o 3.
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extrome 2 cores, 2.9 GHz
(11 I e e e
o
e8]
=
\ poud
]
1
§[ 1000 o ----s-meeeareerarascasaseacasaasao- DOt AbeSeon BA0DSTS. TR MR 214 9 BL ISP ...
>
%)
=
8
c B e e e
£
O
by =
(0]
o
10 ommmmmme e e oo

T 1 Ll T

978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

i
1

2004 2006 2008 2010 2012 2014 2016 2018



=J =/ MOTIVATION

T—
. ¥~ 37 )[) L loves
CPU Trend: Same speed, but multiple cores — )
Goal:Write applications that fully utilize many cores 1004 [l000s L7 N‘”ﬁ -

Option |: Build apps from many communicating processes

— Example: Chrome (process per tab)

— Communicate via pipe() or similar ——— 3. [hin [ok | /bin /376{7
Pros!? 2 P2

— Don’t need new abstractions; good for security ok — SHin
Cons!?

— Cumbersome programming (adus

— High communication over@ TLbs (ko g Fb

— Expensive context switching (why expensive?)




CONGURRENGY: OPTION 2

New abstraction: thread

Threads are like processes, except:

T2
multiple threads of same process share an address space

Divide large task across several cooperative threads
Communicate through shared address space

[% pronle - 24 e VM - MoK
reads




COMMON PROGRAMMING MODELS
Daka 0'4\%\‘4

vod e bk TR

Multi-threaded programs tend to be structured as: .
—

(o

o ewd — 13
— Producer/consumer neworkt e M/

Multiple producer threads create data (or work) that is handled by one of
the multiple consumer threads

- Pipeline
Task is divided into series of subtasks, each of which is handled in series by
a different thread

— Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)



CPU | CPU 2
running running
thread | thread 2

J1o §
RAM 5%

L
JERG L

ik %
—

_—

What state do threads share?

7/5\7’64\9! E)p WA@ /;e,“{ fkv@\a{ (da.
Sta-ck v (0He Y
- :ECJ/ \C/I\YZA LO@Q \/a.Y('ﬂML @#9
WhC - !
Stguikon Fointer ovey g (22
N 0} /

1D
Yol
P — S bm?.a{

R
o pared
tap — shore]



THREAD VS. PROCESS

Multiple threads within a single process share:
— Process ID (PID)
— Address space: Code (instructions), Most data (heap)

— Open file descriptors

— Current working directory
— User and(g?)up id
Each thread has its own
— Thread ID (TID)
— Set of registers, including Program counter and Stack pointer

— Stack for local variables and return addresses
(in same address space)



0S SUPPORT: APPROACH 1

User-level threads: Many-to-one thread mapping

=

Wmé’-

— Implemented by user-level runtime libraries

Create, schedule, synchronize threads at user-level

— OS is not aware of user-level threads fA
“_/—F_/_\

OS thinks each process contains only a single thread of control \

Advantages o e
¢
— Does not require OS support; Portable

— Lower overhead thread operations since no system call

Disadvantages!?

— Cannot leverage multiprocessors

— Entire process blocks when one thread blocks



0S SUPPORT: APPROACH 2

(e
Kernel-level threads: One-to-one thread mapping \ \’H]
— OS provides each user-level thread with a kernel thread T T
— Each kernel thread scheduled independently !

— Thread operations (creation, scheduling, synchronization) performed by OS

Advantages p
: : 2
— Each kernel-level thread can run in parallel on a multiprocessor T

— When one thread blocks, other threads from process can be scheduled
Disadvantages
— Higher overhead for thread operations

— OS must scale well with increasing number of threads



< ppe THREAD SCHEDULE — ©

<
volatile in;Egiiggzggk 0; int main(int argc, char *argv[]) {

loops = atoi(argv[1]);

int loops;
pthread_t pl, p2;
. - printf("Initial value : %d\n", balance);
void *worker(void *arg) { Pthread create(&pl, NULL, worker, NULL);
int i; Pthread_create(&gz, NULL, worker, NULL);
for (i = @; i < loops; i++) { Pthread_join(pl, NULL);
balance++; Pthread_ngn(pZ, NULL);
—_— printf("Final value : %d\n", balance);
} return 0;
pthread exit(NULL); }
}
0
» .Jthreads 100000 @UF@& . Lo0 000

Initial value : 0

Y
Final value :162001 ov Aowe oMt el



balance

THREAD SCHEDULE #1

= balance + 1;

balance at 0x9000

State:
0x9000:
%seax:

Srip =

0x195
0x19a
0x19d

100~ Jot 0%
0x195
mov 0x9000, S%eax

add $0x1, %eax
mov %eax, 0x9000

Thread |

thread
control
blocks:

T1

Thread 2

%eax: 191 101
Jrip:




THREAD SCHEDULE #2

balance = balance + 1;

balance at 0x9cd4 Thread |
State: thread

%eax: loo D\
?x9®®®: 189 o4 |0\ control %rip:
%seax: blocks:

%Srip = 0x195

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

Lokexk 4T ijm/ e
dotermiridh€ L s

Thread 2

%eax: oo 0]
Jrip:

T2




Thread |
mov 0x 123, %eax
add %0x |1, %eax

mov %eax, O0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, O0x 123



0U|Z 1 4 https://tinyurl.com/cs537-sp23-quiz| 4

Process A with threads TA| and TA2 and process B with a thread TBI.

|.With respect to TAl and TA2 which of the following are true?
_ M g C1D
Tothv 0w pc
P Fe
O

2.Which of the following are true with respect to TAl and TBI?

ol W Mok T e
—~ fe{f)amfe fa?& rf’g‘j’/@




Thread 1 Thread 2
mov 0x123, %eax

2dd %0x [ %eax s | added

mov 0x |23, %eax
mov %eax, 0x|123
add %0x2, %eax

9 sdd Uk mov %eax, Ox 123

Thread 1 Thread 2
mov 0x 123, %eax
mov 0x 123, %eax
add %0x2, %eax
add %0x |, %eax
B mov %eax, 0x 123

mov %eax, 0x 123 /l aow J

——

1)

T T2

P1
Thread 1

mov 0x 123, %eax
add %0x|, %eax
mov %eax, 0x123

[

73 Tlr

P2
Thread 2
mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x 123

5 ol



NON-DETERMINISM

Concurrency leads to non-deterministic results
— Different results even with same inputs
— race conditions

Whether bug manifests depends on CPU schedule!

How to program:imagine scheduler is malicious?!



WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic T4 /EL
‘ o odked
akort exetd® (T oy Ox123, %eax Tend Critial
o a2 A add %0x1, %eax Al
A e wk e mov %eax, 0x123 it
oA ot e

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)



SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

o ek L)
‘AW Motivation: Build them once and get them right b
Monitors

08 Locks Semaphores

g \ Condition Variables

lperdwoae Loads Test&Set

Stores ___
Disable Interrupts




LOCKS



L0CKS "o o

Vv
Lok )
Goal: Provide mutual exclusion (mutex) :
— 5 (ode hock v |
Allocate and Initialize 1 W
— Pthread mutex_t mylock = PTHREAD MUTEX_INITIALIZER; e Aotk

Acquire ()
— Acquire exclusion access to lock;
— W ait if lock is not available (some other process in critical section)

. . . . . 0! 201

— Spin or block (relinquish CPU) while waiting ik wy

— Pthread_mutex_lock(&mylock); ey, bt
Release | ) 3 3

— Release exclusive access to lock; let another process enter critical section
— Pthread _mutex_unlock(&mylock);



LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time

— Progress (deadlock-free)

If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
tarvatio
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily



IMPLEMENTING SYNCHRONIZATION

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores

- Using special hardware instructions



IMPLEMENTING LOCKS: W/ INTERRUPTS

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

void acquire(lockT *1) { void release(lockT *1) {
disablelnterrupts(); enableInterrupts();

} }

Disadvantages!?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work



IMPLEMENTING LOCKS: W/ LOAD+STORE

Code uses a single shared lock variable

// shared variable
boolean lock = false;

void acquire(Boolean *lock) { void release(Boolean *lock) {
while (*lock) /* wait */ ; *lock = false;
*lock = true; }

}

Does this work? What situation can cause this to not work?



RACE CONDITION WITH LOAD AND STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)
while(*lock == 1)
*lock =1

*lock =1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic



NEXT STEPS

Project 4: Out now
Midterm I: Next week

Next class: More about locks!



