
CONCURRENCY: DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2023

welcome back!

ADMINISTRIVIA

Grades
Project 3, Project 4 – Check Piazza
Midterm 1 – Check Canvas post

Upcoming
Project 5 – Out today! Check your groups on Canvas!
Midterm 2 – Conflict form on Piazza

-today Regrade requests

->
email

L - this week!
Prachle exams -

April 4t

3:45pm - 7:15 pm

AGENDA / LEARNING OUTCOMES

Concurrency
How do we build semaphores?
What are common pitfalls with concurrent execution?

RECAP

Concurrency Objectives

Mutual exclusion (e.g., A and B don’t run at same time)

solved with locks

Ordering (e.g., B runs after A does something)

solved with condition variables and semaphores

lock()
-> xchg -

only want

1 thread
to be active

-

unlock()

Parentthread child

:
join

SEMAPHORES

Wait or Test: sem_wait(sem_t*)
Decrements sem value by 1, Waits if value of sem is negative (< 0)

Signal or Post: sem_post(sem_t*)
Increment sem value by 1, then wake a single waiter if exists

Value of the semaphore, when negative = the number of waiting threads

internal state

-> integer
value

-

BINARY Semaphore (LOCK)
typedef struct __lock_t {

sem_t sem;
} lock_t;

void init(lock_t *lock) {
sem_init(&lock->sem, 1);

}

void acquire(lock_t *lock) {
sem_wait(&lock->sem);

}

void release(lock_t *lock) {
sem_post(&lock->sem);

}

sem_init(sem_t*, int initial)
sem_wait(sem_t*): Decrement, wait if value < 0
sem_post(sem_t*): Increment value

then wake a single waiter

-
->

how do you
a binary

semaphore
lock -1

-> Decrement &
acquire

> Decrement,
blocked T2

-> Incrementand wake up 72

Reader/Writer Locks

Let multiple reader threads grab lock (shared)
Only one writer thread can grab lock (exclusive)

– No reader threads
– No other writer threads

Let us see if we can understand code…

Example:

Bank
account

- Web browser
phone

- Read
Read balance
Balance

I readsome safe>

line

Reader/Writer Locks

1 typedef struct _rwlock_t {
2 sem_t lock;
3 sem_t writelock;
4 int readers;
5 } rwlock_t;
6
7 void rwlock_init(rwlock_t *rw) {
8 rw->readers = 0;
9 sem_init(&rw->lock, 1);
10 sem_init(&rw->writelock, 1);
11 }

- two semaphores
-

-

-

->
number of

active reader threads

n

- 1 Initialized similar to

-

binary lock

Reader/Writer Locks
13 void rwlock_acquire_readlock(rwlock_t *rw) {
14 sem_wait(&rw->lock);
15 rw->readers++;
16 if (rw->readers == 1)
17 sem_wait(&rw->writelock);
18 sem_post(&rw->lock);
19 }
21 void rwlock_release_readlock(rwlock_t *rw) {
22 sem_wait(&rw->lock);
23 rw->readers--;
24 if (rw->readers == 0)
25 sem_post(&rw->writelock);
26 sem_post(&rw->lock);
27 }
29 rwlock_acquire_writelock(rwlock_t *rw) { sem_wait(&rw->writelock); }
31 rwlock_release_writelock(rwlock_t *rw) { sem_post(&rw->writelock); }

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()
T2: release_readlock()
T1: release_readlock()
T4: acquire_readlock()
T5: acquire_readlock()
T3: release_writelock()
// what happens next?

-> Notfair!
ensure

no

writers are

protectreaders re-readers ++
nR wL L

present - from racing grab write
lock.

10 1

- 2 O 1I ...increment - 1

[
-

-> firstreader 1 - 1

↑

-

-grate back no wake
↳ release:line 14lock up

T3

->
-3 Decrement active

-> lastreader

writer threads
->

↳ wake up

-
Shavesinceene
-
-

QUIZ 18 https://tinyurl.com/cs537-sp23-quiz18

T1: acquire_readlock()
T2: acquire_readlock()
T3: acquire_writelock()

T4: acquire_writelock()
T5: acquire_writelock()
T6: acquire_readlock()

T8: acquire_writelock()
T7: acquire_readlock()
T9: acquire_readlock()

multiple
-> Running we allow1

reader threads

-> waiting for write lock

-.

waiting for read lock

Build Zemaphore!

Typedef struct {
int value;
cond_t cond;
lock_t lock;

} zem_t;

void zem_init(zem_t *s, int value) {
s->value = value;
cond_init(&s->cond);
lock_init(&s->lock);

}

Locks

Zemaphores

CV’s

zem_wait(): Waits while value <= 0, Decrement
zem_post(): Increment value, then wake a single waiter

-> Textbook

=

-

-- State
I

-

-

Build Zemaphore from LOCKs AND CV

zem_wait(zem_t *s) {
lock_acquire(&s->lock);
while (s->value <= 0)

cond_wait(&s->cond);
s->value--;
lock_release(&s->lock);

}

zem_post(zem_t *s) {
lock_acquire(&s->lock);
s->value++;
cond_signal(&s->cond);
lock_release(&s->lock);

}

Locks

Zemaphores

CV’s
zem_wait(): Waits while value <= 0, Decrement
zem_post(): Increment value, then wake a single waiter

acquire lock

- before cond_wait

while
wake up

So ->
- - threadsthat -

we

recheck
↑

SUMMARY: Semaphores
Semaphores are equivalent to locks + condition variables

– Can be used for both mutual exclusion and ordering
Semaphores contain state

– How they are initialized depends on how they will be used
– Init to 0: Join (1 thread must arrive first, then other)
– Init to N: Number of available resources

Can use semaphores in producer/consumer and for reader/writer locks

-> good for programmer

-

-

CONCURRENCY BUGS

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug
s

Atomicity Order Deadlock Other

Concurrency Study

database web server

Fix Atomicity Bugs with Locks

Thread 1:
pthread_mutex_lock(&lock);
if (thd->proc_info) {

…
fputs(thd->proc_info, …);
…

}
pthread_mutex_unlock(&lock);

Thread 2:

pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);using shared

- C to

- variable

setting shaved raw

NULL

Fix Ordering bugs with Condition variables

Thread 2:

void mMain(…) {
…

mutex_lock(&mtLock);
while (mtInit == 0)
Cond_wait(&mtCond, &mtLock);

Mutex_unlock(&mtLock);

mState = mThread->State;
…

}

Thread 1:
void init() {

…

mThread =
PR_CreateThread(mMain, …);

pthread_mutex_lock(&mtLock);
mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

…
}

sharedStathate

~ - -

-

Deadlock

No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

Code Example

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

order of
locks

No other
coordination

No way
to release

or preempt
->

Possible Inter leaving

T1:lock 21A)
-> acquires

Deadlock
72:lock

(&B)
-> acquires

blocked
-1:lock

(&B) -

T2: lock (CA) ->
blocked

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

thread to
edge from

lock it holds

↑ edge from

lock to
that

thread
lock

wants

↑

I

Fix Deadlocked Code

Thread 2Thread 1

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

lock(&A); ~ ->lock (A);
X blocked

lock (&B);
lock (&B) v

Non-circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

removed cycle from
this graph

set_t *set_intersection (set_t *s1, set_t *s2) {
set_t *rv = malloc(sizeof(*rv));
mutex_lock(&s1->lock);
mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

mutex_unlock(&s2->lock);
mutex_unlock(&s1->lock);

}

Thread 1: rv = set_intersection(setA, setB);

Thread 2: rv = set_intersection(setB, setA);

Modularity can make it
harder to see deadlocks

-

5- always lock
31firstbefore 52

C
set- intersection
is

a function
used

in multiple threads

-

-

QUIZ 19

T1 foo(a,b,c)
T2 foo(b,c,a)
T3 foo(c,a,b)

T1 foo(a,b,c)
T2 foo(a,b,c)
T3 foo(a,b,c)

T1 foo(a,b,c)
T2 foo(b,c,e)
T3 foo(f,e,a)

https://tinyurl.com/cs537-sp23-quiz19

↓
-

->

-

I

-

-1:A, B No!

-

51:A
-
- -

T2:B
T2:B,C Same order 12:2

73: C,
A

73:F

-3: E

Deadlock! T1:B, T2:E, T3:
A

Deadlock Theory

Deadlocks can only happen with these four conditions:
1. mutual exclusion
2. hold-and-wait
3. no preemption
4. circular wait

Can eliminate deadlock by eliminating any one condition

-> thread grab some locks a waitfor others

-> no way to ask a thread to release lock

-

1. Mutual Exclusion

Problem: Threads claim exclusive control of resources that they require
Strategy: Eliminate locks!
Try to replace locks with atomic primitive e.g. xchg

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
lock(&m);
n->next = head;
head = n;
unlock(&m);

}

void insert (int val) {
node_t *n = Malloc(sizeof(*n));
n->val = val;
do {

n->next = head;
} while (!CompAndSwap(&head,

n->next, n));
}

insert into linked list

->

multipleI inserts -

->
-

2. Hold-and-Wait
Problem: Threads hold resources allocated to them while waiting for additional
resources

Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been released

How to do this? Use a meta lock:

Disadvantages?

v

↳ locks

-

get all of
locks or

lock (A) -> holding lock A
- lock (meta) none of

them

i I lock,isthe Ilock (B) -> wait lock(C]; limits

!
unlock (meta) Concurrency

unlock(B)

lock (2) - wait .
Y

3. No preemption

Problem: Resources (e.g., locks) cannot be forcibly removed from threads holding them

Strategy: if thread can’t get what it wants, release what it holds

top:
lock(A);
if (trylock(B) == -1) {

unlock(A);
sleep(??)
goto top;

}
…

Disadvantages?
I release resources

Unfairness4
-

-> back off ->
random

1 ↳ one
thread

exponential- back off
lock (B)

<try lock (A)
= =13 I live lock

4. Circular Wait

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
- decide which locks should be acquired before others
- if A before B, never acquire A if B is already held!
- document this, and write code accordingly

Works well if system has distinct layers

CONCURRENCY SUMMARY SO FAR

Motivation: Parallel programming patterns, multi-core machines

Abstractions, Mechanisms
- Spin Locks, Ticket locks
- Queue locks
- Condition variables
- Semaphores

Concurrency Bugs

LOOKING AHEAD
Project 5 out!

Midterm 2 on concurrency

Next: New Module on Persistence

