
Distributed Systems, NFS

Shivaram Venkataraman
CS 537, Spring 2023

Welcome tothe

penultimate lecture!

ADMINISTRIVIA

Project 1 - Project 6 regrades – Last call!

Project 7 grades – this week, last regrade by Monday
Project 8 – final submissions by Thursday evening.

Midterm 3: May 8th

email the TA

->wednesday -> and a me

-
-

Monday
↳ Piazza -Videos, Old Exam

Venue

Quiz - Nextday or two.

AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?

How to design a distributed file system that can survive partial failures?

RECAP

Raw Messages: UDP

UDP : User Datagram Protocol
API:
 - reads and writes over socket file descriptors
 - messages sent from/to ports to target a process on machine

Provide minimal reliability features:
 - messages may be lost
 - messages may be reordered
 - messages may be duplicated
 - only protection: checksums to ensure data not corrupted

largeen
UDP:

-But-effortdelivery

TCP: ACKS, TIMEOUTS

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

Sequence numbers
 - senders gives each message an
 increasing unique seq number
 - receiver knows it has seen all

 messages before N

Suppose message K is received.
 - if K <= N, ignore it
 - if K = N + 1, first time seeing this message
 - if K > N + 1, buffer and then deliver later

--

Ordering No duplicate
Reliable delivery: 2 messages

-

-> last seq
-

number
- delivered

-> duplicate
↑

-

RPC
int main(…) {
 int x = foo(”hello”);
}

int foo(char *msg) {
 send msg to B
 recv msg from B
}

Machine A
int foo(char *msg) {
 …
}

void foo_listener() {
 while(1) {
 recv, call foo
 }
}

Machine B

client
wrapper

server
wrapper

->
Remote procedure

-> client ->
Server

imple

⑪

fund reg
-S food reply

I-

generate call remote functions easily handle requests
wrapper multiple
functions from

clients

Wrapper Generation

Wrappers must do conversions:
 - client arguments to message
 - message to server arguments
 - convert server return value to message
 - convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

"hello"
clientside

↓

-

-

(stream of bytes)
·Ox 12....

server
side

--

(bytes)
L

11

"hello

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

wrapper function
foo (Char*x)

[

x -per
to
char

3

server
addspace

Aquae"oxosyeyspace arein ·Ilarge:
11

-

i

?

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

4 messages

sent on
network

-> sending a request
↳ 1 RPC

⑧ do
client. no

need for

server I workatonBran this?
working

is

on
it

1. Short
RPC

⑱ -> Ack TCP is
not

2. Long up,
Vergefuland be

useful

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[udp send]

Server

2 megs
12 , I for 1 RPC

Protobut ->
C++,

Java. ...

return
value

↑

Thrift - "ack

Distributed File Systems

Local FS: processes on same machine access shared files

Network FS: processes on different machines access shared files in same way

Bot

FromDr.Drone
t

Goals for distributed file systems

Transparent access
 - can’t tell accesses are over the network
 - normal UNIX semantics

Fast + simple crash recovery: both clients and file server may crash

Reasonable performance?

-s Don'tneed to modify
-

user applications

-

-

-

ute e

Lytyt,pig file

Comak

NETWORK FILE SYSTEM: NFS

NFS: more of a protocol than a particular file system

Many companies have implemented NFS: Oracle/Sun, NetApp, EMC, IBM

We’re looking at NFSv2. NFSv4 has many changes

Why look at an older protocol? Simpler, focused goals

-
build storage servers

-

Overview

Architecture

Network API

Write Buffering

Cache
I specific concerns

NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

lots of coves

Thin

client I lotsofdieeine
-

-

youaptop (WES protocol machine

/dev/sda1 on /
/dev/sdb1 on /backups

NFS on /home

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

NFS

mount

-> diff parts
e directo tree

of ry
are in diff FS

-

Local FSLocal FS

Client Server
vim

open ("(home I test:c")
/home Itate...E--

i

wantt

Overview

Architecture

Network API

Write Buffering

Cache

Strategy 1

Attempt: Wrap regular UNIX system calls using RPC

open() on client calls open() on server
open() on server returns fd back to client

read(fd) on client calls read(fd) on server
read(fd) on server returns data back to client

(7)

--

tajpeitce

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

Examples
 open
 read

open -read 14)- 4

Strategy 1: WHAT ABOUT CRASHES

int fd = open(“foo”, O_RDONLY);
read(fd, buf, MAX);
read(fd, buf, MAX);
…
read(fd, buf, MAX);

Server crash!

-

- -4096
and comes

back
- ·--rail after

301

netry read, succeed.

Potential Solutions

1. Run some crash recovery protocol upon reboot
– Complex

2. Persist fds on server disk.
– Slow

– What if client crashes? When can fds be garbage collected?

-> large number of client

-

Strategy 2: put all info in requests

Use “stateless” protocol!
– server maintains no state about clients
– server still keeps other state, of course

Literaterate

Strategy 2: put all info in requests

“Stateless” protocol: server maintains no state about clients

Need API change. One possibility:

pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

Specify path and offset each time. Server need not remember anything from clients.

Pros?
Cons?

this

->server can execute state

withoutup any
looking

Server crash/ recover isclean

↓
traversal each time

-> Perform

Strategy 3: file handles

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

File Handle = <volume ID, inode #, generation #>

Opaque to client (client should not interpret internals)

partof
theAPI

- - -
? -> specify offsetevery

time

12 '

server

extent--I I Long Rewardin
wic filewideis ·modes

1a1b/c 1d /e/foo
↳ FI is better

O
RPC

thenpath

->
traversal

or - 11

"O5023

vintedere

Can NFS Protocol include Append?

fh = open(char *path);
pread(fh, buf, size, offset);
pwrite(fh, buf, size, offset);

append(fh, buf, size);

- 7 APIis diff
-

-afede 1,
*

① Multiple clients
-

I
read
[sine region

② Failure

pwrite VS APPEND

AAAA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite ABBA
AAAA

file

pwrite(file, “BB”, 2, 2);

append(file, “BB”);

always same

output

->

-retry purite operation I

0

Me ---Bas

Idempotent Operations

Solution: Design API so no harm to executing function more than once

If f() is idempotent, then:
 f() has the same effect as f(); f(); … f(); f()

int fd = open(“foo”, O_RDONLY);
read(fd, buf, MAX);
write(fd, buf, MAX);
…

Server crash!

-

as many

times Imentecerta

What operations are Idempotent?
Idempotent
 - any sort of read that doesn’t change anything
 - pwrite

Not idempotent
 - append

What about these?
 - mkdir
 - creat

-> offset, contents

->

->
mpdir ("/f0"); mRdie)"/too") foralready
-

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

Server acknowledges write before write is pushed to disk;
What happens if server crashes?

client:

 write A to 0
 write B to 1
 write C to 2

Server Write Buffer Lost

server mem: A B C

server disk:

server acknowledges write before write is pushed to disk

Server Write Buffer Lost

server mem: Z

server disk: X B Z

Client:

 write A to 0

 write B to 1

 write C to 2

 write X to 0

 write Y to 1

 write Z to 2

Problem:
No write failed, but disk state doesn’t match
any point in time

Solutions?

Write Buffers

Local FS

Client Server

NFS

write

write buffer

Don’t use server write buffer. Problem: Slow?

Use persistent write buffer (more expensive)

NEXT STEPS

Next class: Wrap up NFS, Summary

