
Distributed Systems

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

ADMINISTRIVIA

Project 6 grades
Project 7
Project 8 – Extra credit (4%)

Midterm 3 conflicts

AEFIS feedback

->tomm AM

->nextweek

-

-

-

->useful

AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?

RECAP

SSD OPERATIONS
Read a page: Retrieve contents of entire page (e.g., 4 KB)

– Cost: 25—75 microseconds
– Independent of page number, prior request offsets

Erase a block: Resets each page in the block to all 1s
– Cost: 1.5 to 4.5 milliseconds
– Much more expensive than reading!
– Allows each page to be written

Program (i.e., write) a page: Change selected 1s to 0s
– Cost is 200 to1400 microseconds
– Faster than erasing a block, but slower than reading a page

Read Program (Write)
24

Page -> 4KB

-
Erase

↓
Block -

256kB

-

--
-

FTL: DIRECT MAPPING

Cons?

Write amplification
No wear-leveling

wew or

↑
the is rees

-

-

I

I X
X

Flash Pages Weout!I
Erase block frequently

I number of physical writes for I logical write

FTL: LOG-BASED MAPPING
Idea: Treat the physical blocks like a log

-; 101+1 2000-02

at c1 at

-

7 Erase block

2- write pages in order (log) -> Avoid read modify
writes

-> Avoids wear on few pages

GARBAGE COLLECTION
Steps:

Read all pages in
physical block

Write out the alive
entries to the end of
the log

Erase block (freeing it
for later use)

/
- ~ -

-

E

block

I live pages and of

SSD VS HDD PERFORMANCE
small requests Actualbeingreliedpertoe

SLC vs. MLC

FTL layer

- f
--

f I
SSDS

are ↑
Geo

lauge
at 7

good ↳ 1 granularity
wordom

acce much
random

lower
write

SSD VS HDD COST

1TB ~ $150 on average
~15 cents / GB

~1.5 cents / GB

Backup---

-
density is increasing

I

- 0
W

-

- -

-

10x more-

experie

PERSISTENCE SUMMARY

Managing I/O devices is a significant part of OS!
Disk drives: storage media with specific geometry
SSDs: Pages, Blocks

Filesystems: OS provided API to access disk

Simple FS: FS layout with SB, Bitmaps, Inodes, Datablocks
FFS: Split simple FS into groups. Key idea: put inode, data close to each other
LFS: Puts data where it’s fastest to write, hope future reads cached in memory

https://www.eecs.harvard.edu/~margo/papers/usenix95-lfs/supplement/

FSCK, Journaling

I applications
open,

FS API
FFS:

raingesign-its
Interface

iDrives/SSD

DISTRIBUTED SYSTEMS

What is a Distributed System?

A distributed system is one where a machine I’ve never heard of can cause my program to fail.
— Leslie Lamport

Definition: More than one machine working together to solve a problem

Examples:
– client/server: web server and web client

– cluster: page rank computation

-> Turing
award winner

Tiltare ener

WHY GO DISTRIBUTED?
-
Increase throughput soy more

share or performance
- Connectivity

-

send deta
ssx My

- specialized machines - better performance

-

Increasefull teamis album it
mee

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors

- packet loss
- node/link failure

-Beer=>
-> invertwas Jig

Communication Overview

Raw messages: UDP
Reliable messages: TCP
Remote procedure call: RPC

Is Acronymus
640 Networking

Raw Messages: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors
- messages sent from/to ports to target a process on machine

Provide minimal reliability features:
- messages may be lost
- messages may be reordered
- messages may be duplicated
- only protection: checksums to ensure data not corrupted

very lightweight
--

file ->
Socket

-

- ↳Stcketgernein
2

-

write1

1 read 1
-

write 2
read 3

-

write 3

-

wead 3

dest 1003 of
us

Raw Messages: UDP

Advantages
– Lightweight
– Some applications make better reliability decisions themselves (e.g., video

conferencing programs)

Disadvantages
– More difficult to write applications correctly

- servertbytes client

reliably -> wetry
some

frame

stipframes
to responsiveness

NOT A QUIZ?

Course feedback: https://aefis.wisc.edu

Reliable Messages: Layering strategy

TCP: Transmission Control Protocol

Using software to build
reliable logical connections over unreliable physical connections

-> mostly commonly used

- Protocol

--

↓ I
interface links, machines unreliable

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Ack: Sender knows message was received
What to do about message loss?

-> Acknowledgement

query "Wisconsin"

OK - I got -
-- the quarry
I

was

message
ful!success

Technique #2: Timeout

Sender
[send message]
[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

S

ad?"
Wisconsini

3 1
retry ->

same

message

-

send returns

TIMEOUT

How long to wait?

Too long?
– System feels unresponsive

Too short?
– Messages needlessly re-sent
– Messages may have been dropped due to overloaded server. Resending makes

overload worse!

Adaptively configure timeout

queue
is

full

->

↳ 640

-add - rter,
↳
dropped

-

LOST ACK PROBLEM

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

Exactly once droppedin retry
Semantics

->diyelated
-

-

dropped
ID

need an

messages
can be

used to

- igrove
message

e

SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N

Suppose message K is received.

- if K <= N, Msg K is already delivered, ignore it
- if K = N + 1, first time seeing this message
- if K > N + 1 ?

ori ->
avoid duplication

number
packets:64 bytes prevent reordering

headerATA checksum

No last message
delivered

Send.
=

Reau

-

meg
1

2-

205s
seq,

no:

meg2 2053-
-- -- seq-no: ↓I - --I " K

--

deliver & incoming
↳ buffer it until

increment k message
N+ arrives

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order
Timeouts are adaptive

-

Communications Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC -> software
abstraction

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

twinitspitc
RPC library -> providesaction

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

->

-intasty
data

e

space ->
send result

as a mag

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

client
wrapper

server
wrapper

client

->
> 7.Departi

-

- -

- -

value:int to 4 bytes is partof
pr =int*

↳ Firt)=int-
RPC library

serialize

RPC Tools

RPC packages help with two components
(1) Runtime library

– Thread pool

– Socket listeners call functions on server

(2) Stub generation

– Create wrappers automatically
– Many tools available (rpcgen, thrift, protobufs)

I
thread server

per request-]
--

so thatyoucan
handle
ene
- time

↳ serializing Iserializethe

Wrapper Generation

Wrappers must do conversions:
- client arguments to message
- message to server arguments
- convert server return value to message
- convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

int/string/struct

bytes

-

↳ seriacting) stream of

serialize =4bytes

serialize =char as a byte

↳
big endian

littleendian

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

NEXT STEPS

Distributed Filesystems

