
PERSISTENCE: FILE API

Shivaram Venkataraman
CS 537, Spring 2023

Hi!!

ADMINISTRIVIA

Project 5

Project 6, extra slip days

Midterm 2: Today!

5:4 Spr

Piazza

AGENDA / LEARNING OUTCOMES

How to name and organize data on a disk?

What is the API programs use to communicate with OS?

RECAP

RAID

FS

ApplicationBuild logical disk
from many
physical disks.

Logical Disk

RAID: Redundant Array of Inexpensive Disks

Logical disk gives

capacity,

performance,

reliabilitymapping C, I

Metrics
Capacity: how much space can apps use?

Reliability: how many disks can we safely lose? (assume fail stop)

Performance: how long does each workload take? (latency, throughput)

Normalize each to characteristics of one disk

Different RAID levels make different trade-offs

-

RAID Level Comparisons

Reliability Capacity Read latency
Write

Latency Seq Read Seq Write Rand Read
Rand
Write

RAID-0 0 C*N D D N * S N * S N * R N * R

RAID-1 1 C*N/2 D D N/2 * S N/2 * S N * R N/2 * R

RAID-4 1 (N-1) * C D 2D (N-1)*S (N-1)*S (N-1)*R R/2

RAID-5 1 (N-1) * C D 2D (N-1)*S (N-1)*S N * R N/4 * R

the data

half isusable

aior
- Is

Gbig- -↳rotate the parity

code on acrous
disks

parity disk -code store the

XOR parity dist

DISKS à FILES

What is a File?

Array of persistent bytes that can be read/written

File system consists of many files

Refers to collection of files
Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names

– Unique id: inode numbers
– Path
– File descriptor

--

usere
to

API for

↳ provided store / retrieve
data

--
by OS

--- Is asare

location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

file

file

in
od

e
nu

m
be

r

Data

Meta-data

6 to max inode number

I
unique ↓
number

associated
with a
-

file

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)
write(int inode, void *buf, size_t nbyte)
seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

-

--

"5537-waid-5.pdf" ve

10234

would prefer names

users
than

numbers

- rather

I
related files in

a directory

Paths

String names are friendlier than number names
File system still interacts with inode numbers

Store path-to-inode mappings in a special file or rather a Directory!

"hello."-> string
name for

>

thisfile

↳
a +

-

Directory
->seca

should also show
inode numbers!

lettein

location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

hello.
E

#I

8
readme. Nxt

Paths

Directory Tree instead of single root directory
File name needs to be unique within a directory

/usr/lib/file.so
/tmp/file.so

Store file-to-inode mapping in each directory

start
->

-

->

fine because
notin

the

- same directory &
⑧

find out-
inode number

for thisfile

location
size=12

inodes

0
location

size1
location

size2
location
size=63
…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

Example: read /hello

Reads for getting final inode called “traversal”
root dir

-> start from

-

--

read inode mapping
in

find inode number for hello

File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)
write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?

Expensive traversal!
Goal: traverse once

-

-

read ("Ihello") these
each of

--

write ("'hello") calls need inode

number
-> many levels, is(Python) read ("Ihell"

↳ traversal

-> each level could incur each time!
disk 110

File Descriptor (fd)

Idea:
Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).
Do reads/writes via descriptor, which tracks offset

Each process:
File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table
stdin: 0, stdout: 1, stderr: 2

returns FD

- struct for E

- imode ->

ofset-
y

Process

Id 5100] fos;

-
-

- 3

File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined

read()

read()

-only passed toopen

- --

-

-- offects:
- hello.

imode

-member
S d

- start offset
-

from
-

-
here

-

FD Table (xv6)
struct file {
...
struct inode *ip;
uint off;

};

// Per-process state
struct proc {
...
struct file *ofile[NOFILE]; // Open files
...

}

struct {
struct spinlock lock;
struct file file[NFILE];

} ftable;

->
File descriptor -global

-an
operatea

ED number

indexes into array

Code Snippet

0
1
2
3
4
5

offset =
inode =

fds
fd table

location = …
size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

DUPper process
-

⑧12

W

offset=0 I

·

---> inode

fals

read (fd1) ->
offct

12

0

read (fd2)
->
offct

12

updates
-

- -

read 12 bytes
read (fd3) -> readfromt

- --

->
-

READ NOT SEQUENTIALLY
off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current

location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of

the file plus offset bytes.

struct file {
...
struct inode *ip;
uint off;

};

-- - -- beginning of
-

-
file

->

-

->end of file

[updating
the offsethere

QUIZ 24

Offset for fd1

Offset for fd2

Offset for fd3

https://tinyurl.com/cs537-sp23-quiz24

-

- -

-> sets Idz ofectto 16

100

16

16

WHAT HAPPENS ON FORK?

setof file

descriptors
are

-

duplicated
do

-

when you

fork

seek ↑
->

operation
will update
offset !

Communicating Requirements: fsync

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable

-> delays disk I/0

reboot /recover

↳data loss data missing

I
force date tobe thished

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

rename

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory

What can go wrong if system crashes at wrong time?

Atomic File Update

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file

2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it

Summary

Using multiple types of name provides convenience and efficiency

Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

