PERSISTENGE: FILE API

Shivaram Venkataraman
CS 537, Spring 2023

Project 5

Project 6, extra slip days

Midterm 2:Today!
§:4§?“

V/ﬁ frra

ADMINISTRIVIA

AGENDA / LEARNING OUTCOMES

How to name and organize data on a disk?

What is the API programs use to communicate with OS?

RECAP

RAID

Build logical disk Application Logical disk gives

from many
physical disks.

w7y

FS capacity,

performance,

Logical Disk
reliability

RAID: Redundant Array of Inexpensive Disks

METRICS

Capacity: how much space can apps use!?
Reliability: how many disks can we safely lose? (assume fail stop)
Performance: how long does each workload take? (latency, throughput)

Normalize each to characteristics of one disk

Different RAID levels make different trade-offs

RAID LEVEL COMPARISONS

yrYor /"“e/ /ﬁ
bl W hle
e : Write _ Rand
Reliability 74}/ Read latency Latelncy Seq Read | Seq Write [Rand Read Whrite
@ | [oN D D N*S | N*S | N*R | N*R
- | ConNRD D D | N2*s | N2*S | N*R | N2*R
i (N-1) * C D 2D | (N-1)*S | (N-IY*S | (N-Iy*R |][R
| (N-1) * C D D | (N-I)'S | (N-I)*S | N*R | NM4*R Dgg
N |
I G ol N7 T s 7”‘1{'7
v Aok
AA Coo{é /Vtw@ e &0(6 on QLD
N) —)
%ﬂ 7{77 U& X0 L f{&n\{@ %’S/L

DISKS = FILES

WHAT IS A FILE?

Array of persistent bytes that can be read/written

I% PTDV“J\J
:) . 0
File system consists of many files hﬁ
Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one
Three types of names

— Unique id: inode numbers DS ot
— Path

— File descriptor

AP

#oe

”]éd whe v

/ .«r(ljf'! TeNe

Aotz

< jnode number

%f

ot

patth 2

7&1@

inodes

location
size=12

location
size

size
location
size=6

Meta-data

file

Data

L
:

file

FILE API CATTEMPT 1)

read(int inode, void *buf, size t nbyte)

write(int inode, void *buf, size_t nbyte) I

seek(int inode, off_t offset) Vg §37- vod- S Hf VA
Jo23Y

ww}u /7(&7(2\/ s

s ac s
Y LY
Disadvantages? / Mﬂ fhom

- names hard to remember
- no organization or meaning to inode numberS/l
- semantics of offset across multiple processes? L el SJM in

Jove 0 N

o

PATHS

String names are friendlier than number names —
File system still interacts with inode numbers

tore path-to-inode mappings in a special file or rather a Directory!

[P o

/
Iy W ;m,oo(o ywahet™ |

inode number

inodes

location Dolle ¢
‘0} o

location
size
2 location “readme.txt’”: 3,“hello”: 0. ...
size
location
3 o
size=6 I

2V b

PATHS

Directory Tree instead of single root directory
File name needs to be unique within a directory

lusr/lib/file.so — gﬁ‘*@ e camre P N

fle

[tmpl/fileso — Samnt, ﬁkr(’_f/‘%’/y

Store file-to-inode mapping in each directory

bar.txt

foo

o

bar

inodes
Sizes 12 -]
size
g) “readme.txt’: 3,“hello™: 0, ...
size
A]
Reads for getting final inode called “traversal” — Motk fro o
I

Example: read /hello Y@J ,{/»Oo(b W“H’wj

inode number

FILE API (ATTEMPT 2)

read(ghat_jgggh, void *buf, off t offset, size t nbyte)
write(char *path, void *buf, off t offset, size t nbyte)
nalr pdat

Disadvantages? o U m ,)

Expensive traversal! — §)
P write C //Lbuﬂ
Goal: traverse once

—7 W/%U/W’“/ yeok C/h’u”/

k'(\ OA_-Y

FILE DESCRIPTOR (FD)

r
|dea: F"D ceorns T
Do expensive traversal once (open file) St jtot L
Store inode in descriptor object (kept in memory). O
Do reads/writes via descriptor, which tracks offset ofik —2

Each process:

(P'YD cett &

File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table M [i ’WJ
stdin: 0, stdout: |, stderr:2 1

FILE API (ATTEMPT 3) et

V)
/ WLA };M&d b 6771/; vesd ()
int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte) N
. o s
close(int fd) ; }@MOQ
{node —
M(LW/ — 7]
advantages: g ’
- string names v~ prart 0 ff""ﬁ
- hierarchical +— frr -
- traverse once v here

- offsets precisely defined

FD TABLE (XV6)
— il deseigte - WM

struct file {

struct {
struct spinlock lock;
struct file file[NFILE];

struct inode *ip; ‘
uint off; —» e raxk ojere
}; peaxts fram

// Per-process state
struct proc {
??C,AVk
struct file *ofile[NOFILE]; // Open files
} =) rumbe Y
adexes o mmfa

pavt frot¥ DUP

fd table fds
0 BN
| B offset = ,
2 s Pr—
3 -/ | location = ...
i ot =P |
g] //j &Mﬁb “file.txt” points here
12
4¥“*
/\ —
’fw (]COL_' W Ow‘t D
(ngZz) — 125 I
int fdl1 = open(“file.txt”); // returns 3 N up
read(fdl, buf, 12); ok 2 Eth ol Fﬁi}) - {QW~J1
int fd2 = open(“file.txt”); // returns 4 <— £ 24

int fd3

:c:lsug(de); // returns 5

READ NOT SEQUENTIALLY

off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK SET, the offset is set to offset bytes. “L%P”“7 +
If whence is SEEK CUR, the offset is set to its current %ﬂe

location plus offset bytes. —-s
If whence is SEEK _END, the offset is set to the size of7 o %ﬂe
the file plus offset bytes. - T

struct file {

éééuct inode *ip; \ feve
uint off; . — ijw&“ﬁ e ﬂ%é@P)
}s

0U|Z 24 https://tinyurl.com/cs537-sp23-quiz24

int fdl = open(“file.txt”); // returns 12
int fd2 = open(“file.txt”); // returns 13
read(fdl, buf, 16);

int fg§ = dup(fd2); // returns 14
read(fd2, buf, 16); — Ali fd2 ol & /b
lseek(fdl, 100, SEEK SET); —

Offset for fd |
|00

Offset for fd2

Offset for fd3

f8

WHAT HAPPENS ON FORK?

Open File Table

inode: —— 1" |Inode #1000
(file.txt)

COMMUNICATING REQUIREMENTS: FSYNC

File system keeps newly written data in memory for awhile
Write buffering i rf ? NXAJJA disk 7/o
g improves performance (why?) — >

e (ovlY
But what if system crashes before buffers are flushed? oot /

Co e Jois Joto i
fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache

Q’Iakes data durable
) /Foraf_u Ma_ ﬁ \)Q W{J}\

DELETING FILES

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

RENAME

rename(char *old, char *new):
- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?

ATOMIC FILE UPDATE

Say application wants to update file.txt atomically

If crash, should see only old contents or only new contents

|. write new data to file.txt.tmp file
2. fsync file.txt.tmp

3. rename file.txt.tmp over file.txt, replacing it

SUMMARY

Using multiple types of name provides convenience and efficiency
Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

