
PERSISTENCE: FILE SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

ADMINISTRIVIA

Midterm 2

Project 6

-> early next
week

extra slip days
-I

April 14th Check
Canvas

AGENDA / LEARNING OUTCOMES

What are the API to create/modify directories?

How does file system represent files, directories?

What steps must reads/writes take?

RECAP

File API WITH FILE DESCRIPTORS

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- offsets precisely defined

file descriptor

↑ -
traversal

- --

-

-

-> done doing
reads/writes on

thisfile

Code Snippet

0
1
2
3
4
5

offset = 12
inode =

fds
fd table

location = …
size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

DUP

offset = 0
inode =

read which position in
thefile

-
will I

read from

-

- &

increments
--automatically, 2

- effect by

-

Communicating Requirements: fsync

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable

men buffers - flash
↳

memory faster than disk are fill I

timer (every
/ min)

I L Hedietane
Database ->

Save
Editor ->

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

~ whennodirectifysaintneed

-Dayu ndrector tengarden

rename

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

Just changes name of file, does not move data
(Even when renaming to new directory)

Renames are atomic!
Either file exists in old path or new one

-
move a file from one path

toanother

-very largest
file as the

->property
provided

jai dtirani in
stay theinvi- open README

README

Directory Calls

mkdir: create new directory
readdir: read/parse directory entries

read the x86 implementation
->

- Is
-

thisdir

-
-> pevent

directory

Links
Hard links: Both path names use same inode number
File does not disappear until all hard links removed; cannot link directories

echo “Beginning…” > file1
ln file1 link
cat link
“Beginning…”

ls –li
18 -rw-rw-r-- 2 shivaram shivaram 10 Apr 6 21:32 file1
18 -rw-rw-r-- 2 shivaram shivaram 10 Apr 6 21:32 link

-> creates a
hardlink named "link"

unlike files -j
-

SOFT LINKS

Soft or symbolic links: Point to second path name; can softlink to dirs

ln –s oldfile softlink

Confusing behavior: “file does not exist”!

Confusing behavior: “cd linked_dir; cd ..; in different parent!

- Softlink

suc a new
linked file
Afold file--

any application
that

file will↳
: delete oldfile

opens, redirected
"

Her
link isbroken r/lib/python

Is E python -> python 3.5
I

3.5

output python

PERMISSIONS, ACCESS CONTROL
need X

user group all
bit to

- directory

-Nur
access

a

-

d -if itsa directory

all
user group

-

rwX

↓d Is
-

execute

↳ AFS

->conic Iwups

FILE API Summary

Using multiple types of name provides convenience and efficiency

Hard and soft link features provide flexibility.

Special calls (fsync, rename) let developers communicate requirements to file system

FILESYSTEM DISK STRUCTURES

word

itseethe

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

Disk

=256kB

FS Structs: DATA BLOCKS

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Simple layout àVery Simple File System

metadata
these blocks will store

I - file
contents

INODE POINTERS

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

these blocks
inodes

store

2 A--
~ · .-XXX

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block

Each inode is typically 256 bytes (depends on
the FS, maybe 128 bytes)

4KB disk block

16 inodes per inode block.

16 x5

=80insinodes
inode blocks

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Inode also contains

-> to
the

-> who owns pointers
blocks

data

-- timestamps addre 8, 9, 10
-

->
hard links

adde 8,24,37
--

FS Structs: INODE DATA POINTERS

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Assume single level (just pointers to data
blocks)

What is max file size?
Assume 256-byte inodes
(all can be used for pointers)
Assume 4-byte addrs

How to get larger files?

-> block address
block size = 4KB

Each 4byte isan addr

-> 64 pointers x4KB
=256 KB

inode

data data data data

directper

inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks? Any Cons?

64 indirectdata
blocks

indirect blocks

-

64

adde

4MB indirectF -> space blocks
-> multiple hopssmall

indirectblock:4KBEach
=4 bytes data

-

files
each add

blocks
=>Each indirectblock =1024data

I
4MB x64

X 4 kB =256 MB

inode

indirectdata data data

Better for small files!
How to handle even larger files?

-

↳ double indirect↳access.The dataen
move

trible indirectI levels in

free

OTHER APPROACHES
Extent-based
Linked lists (File-allocation Tables)
Multi-level Indexed

Questions
– Amount of fragmentation (internal and external)
– Ability to grow file over time?
– Performance of sequential accesses (contiguous layout)?
– Speed to find data blocks for random accesses?
– Wasted space for meta-data overhead (everything that isn’t data)?

Meta-data must be stored persistently too!

->
ext3 or

ext4
FAT32 (thedate

block

-> Trade-offs

->
linked lists

might

-

QUIZ 25
Assume 256 byte inodes (16 inodes/block), block size = 4KB.
What is the offset for inode with number 0?

What is the offset for inode with number 4?

What is the offset for inode with number 40?

D D D I I I I I
0 7

https://tinyurl.com/cs537-sp23-quiz25

-

12 KB I
-

12kB

10,1,2,3)
12kB +4x256

=13kB

12kB +40 x256

12 +10
=22B

Directories
File systems vary

Common design:
Store directory entries in data blocks
Large directories just use multiple data blocks
Use bit in inode to distinguish directories from files

Various formats could be used
- lists
- b-trees

medic test

-- jetit j E7
- I within a block representcontentt

Simple Directory List Example

valid name inode
1
1
1

.
..
foo

134
35
80

1 bar 23

unlink(“foo”)

↑ all directories

created 3 have ↑

& ~

something
called A O I

inode
foo
-7

80

Allocation

How do we find free data blocks or free inodes?

Free list

Bitmaps

Tradeoffs in next lecture…

about
-> meta data

ES

-> listof data blocks unused
which data blocks are

allocated and

Bitmaps not?
-

40gby see
in try itchisfreedblock

bits -tes
4096

FS Structs: BITMAPS

D IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

inode data

bitmap bitmap

↑
⑧
-

X

X

! Erbor
total ran inces is now as
block lize=4KB blocks

Superblock

Need to know basic FS configuration metadata, like:
- block size
- # of inodes

Store this in superblock

-

-

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Bitmaps

* I

&

SUMMARY

Super Block

Data Block
Inode Table

Data BitmapInode Bitmap

directories indirects

NEXT STEPS
Next class: Filesystem operations, FFS!

