PERSISTENGE: 1/0 DEVIGES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 4: Grades today (hopefully?)

Project 5:How is it going? —— (7ow

Midterm2 —7 Lonvas

Venue : Social Sciences 6210
Time :5.45pm - F:15 4m
Practice exams: Check Canvas (Files = Old Exams)

j}ﬂ /f“’(/ ﬂu\k’« o (anvat

PIZ%‘/& — &mw%woz

AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices!?

What are the components of a hard disk drive?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

Make each application
believe it has each

resource to itself
CPU and Memory

| .Virtualization

Provide mutual
exclusion, ordering

2. Concurrency

3.Persistence —> T outpelt A&
s

s
" anw — s

do ¢

MOTIVATION

What good is a computer without any /O devices!?

keyboard, display, disks

We want:
- H/W that will let us plug in different devices

- OS that can interact with different combinations

Ke%’”"
NS
Tlo @ OS ?
dopi s

HARDWARE SUPPORT FOR 1/0

CWC l‘eygﬁ(
CPU Memory L\ M
~ 100 {L G\B/A
I Bondwid fin I cast
Memory Bus
(proprietary) .
) Pwr — Aank
< » Genera | 1/0 Bus V4
(e.g., PCI)
~ 04 61(Qﬁ/é
Graphi
Numhev o
)O‘D gO'D

< » Peripheral I/O Bus - .
g | (e.g., SCSI, SATA, USB) (g, |5 ﬂ@/\/;&b

Nn

b

CQ'W(A

Graphics [<(E>

PCle
Graphics

los g
6818

PCle

Network

Memory
Interconnect

CPU -’ Memory

DMI

/O Chip

Keyboard

Mouse

USB TFTT I

eSATA —
J | Disk
DiL
DiL
Di
}NL\!L

oS CANONICAL DEVICE

A Yaaal kB
oﬂng{/ ©
datn OS reads/writes to these

. - ~ vk Yr\ﬂf QU‘:
Device Registers Status COMMAND DATA e f 1
gi‘::/z IQ;/; _ F}LYM‘A)@‘Y& r\ﬂQ/}
Srraller V8 |
] Code wowidh T%}.Z; Ao aasz

~ Status checks: polling vs. interrupts
Data transfer

Control: Invoking 1/O

EXAMPLE WRITE PROTOCOL

WE| Te O’CFM}’ 24 PO NJZ'J Oj
| A N ’
write opexahTm Status [[COMMAND DATA
% & o4 [Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips
. ~ Oﬂk 7£7 "C’Q’
while (STATUS == BUSY) %WJ v M(7
7 ; // spin ="
— Write data to DATA register q1L }WA e dota
— Write command to COMMAND register
- —— - hot
—s>while (STATUS == BUSY) s i @

; // spin (omletad 1 oper a0

worlt)%Lj dere.

o MM&X fo E
v ‘ me.
CPU: 0

Disk:

o 5
while (STATUS == BUSY) // 1
Write data to DATA register /] 2

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

"
’

while (STATUS == BUSY) 7/ 1

wait for interrupt; ibhfmf& /%Ww%
Write data to DATA register /] 2 ArapTove éﬂu
Write command to COMMAND register // 3 Wﬁﬁuﬁﬁ“
-while (STATUS == BUSY) // 4

walit for interrupt;

INTERRUPTS V. POLLING

Are interrupts always better than polling?

JA :
Fast device: Better to spin than take interrupt overhead /

— Device time unknown? Hybrid approach (spin then use interrupts)

Flood of interrupts arrive ‘ A
W’j f)«%é

— Better to ignore interrupts while make some progress handling them
Other improvement

— Can lead to livelock (always handling interrupts) —

— Interrupt coalescing (batch together several interrupts)

QWY%I/OYW MM#/

dw/maf/wte:

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

_ Data transfer

- Control: Invoking 1/0O

DATA TRANSFER GOSTS

. \ o (v e Ao oher T
Cou s W/{L\/g/y A/\VQ’D/CQ/ —> net” 7

CPU |1 |1 |1 |1]|]1leclc!|ec

1] 1

Disk k 1 (11111

CoU ao%«jm
B fe ¥k

PROGRAMMED I/0 VS. DIREGT MEMORY ACCESS

PIO (Programmed I/O):
— CPU directly tells device what the data is

vdware
DMA (Direct Memory Access): > bolp fvm havdia

— CPU leaves data in memory @ (VY D
M
(0]

— Device reads data directly from memory

’K%

DN\
ergre

|

b |

CPU |1 |1]1]1

_DMA c|lc|c

- Disk 1111711

| 3,4
\ }
o [

while (STATUS == BUSY) 1) 1 — Lo

— DMA

Write command to COMMAND register // 3
while (STATUS == BUSY) /] 4 — Tatervhs

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts

PIO vs DMA

Control: Invoking 1/O

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

while (STATUS == BUSY) // 1
Write data to DATA register /] 2

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

"
’

SPECIAL INSTRUCTIONS VS. MEM-MAPPED |/0

2 §h et — P
Special instructions Ly Renster fot-1
— each device has a port ouT pEliaee PoFT

— infout instructions (x86) communicate with device
— 1 l/\)'r‘\’f& UWIQ’J?S 64'

OvT EAX -

Memory-Mapped I/O - ° ool T
’O —
— H/W maps registers into address space YO s

— loads/stores sent to device ste@ nwm 7 ”{W"l@’ v '
%
DEAM
e{(%rmfb %
Doesn’t matter much (both are used) "

PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts
PIO vs DMA

Special instructions vs. Memory mapped I/O

DEVICE DRIVERS
vwgd

\/ \ n — P{O?{M

Application
LLLLL POSIX API [gp,e_n, read, write, close, etc.]
1&1@, File System Raw
U Generic Block Interface [block read/write]
L blotk Generic Block Layer

Specific Block Interface [protocol-specific read/write]

Device Driver [SCSI, ATA, etc.] —

Howrd <SP USE
Nisk dxtve

user

kernel mode

VARIETY IS A CHALLENGE

Problem: Modalaity — Stake 167
— many, many devices

— each has its own protocol
How can we avoid writing a slightly different OS for each H/W combination?
Write device driver for each device

. . Al 8
Drivers are 70% of Linux source code — > MMA‘*W’ of (o¢

OU |Z 20 https://tinyurl.com/cs537-sp23-quiz20

If you have a fast non-volatile memory based storage device,
which approach would work better?

— VoUlM? u bler ,;lc Aot M
Qo] 0(anle rm%(/ oVve r/\U«ﬂQ

What part of a device protocol is improved by using DMA ?
Wek v deie & e [
Wite Cormmand

Wat Fr 0 Jvﬂ*’”‘km‘ to w efe

w
S
D
=)
()
oC
—
-

HARD DISK INTERFACE

68 powpecte
Disk has a sector-addressable address space e
Appears as an array of sectors o
Sectors are typically 512 bytes /
Main operations: reads + writes to sectors .)OQOB
feckr = " hyes

Mechanical and slow (?)

N
/

Platter

Surface

OTQYO\K% oM
both €

Spindle

<__/

|

Surface

100D oTakons 60,000 s
)

. wiie. ow RPM?

—

Yv\,o/ih oY

Motor connected to spindle spins platters

=

Rate of rotation: RPM

10000 RPM - single rotation is 6 ms

v—/

« e

d%oo £rM — votakon pey
ke,

Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder

Tracks are divided into
numbered sectors

Heads on a moving arm can
read from each surface.

READING DATA FROM DISK

]0)00’0 grm
Rotates this way Rotational delay
Sowed o MR
. oteken B
[eplete
vosd fme .
Disk ot
Z2ms = foe qabv .
| ¥
date. oy B

READING DATA FROM DISK

Rotates this way W; lgﬂu/
Q — .
© 0 Seek Time
& s 12 k%
§\°’ 28— 3 = Tlime for AYm
& /10 35 25 >
Q0 22 14 £ omwe E
Seek34 26 i
_ o -
QD21 [35 27| 15 L ek
/ \a2 28 : ‘
S o ~—2 77 s e, dab Y
N ¥
& 6 o 5

TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time

2

= }’\/0"3 how it Fre N XL/{/,M/

[ov disk de i ke Jiok 44’6“4
AYN V\L@(’F‘ﬂ/ 1 frelt/ﬂ/l'/\'@”‘

m Ve

SEEK, ROTATE, TRANSFER

\1 ey it drac
owtey ‘,L»M%/ Aok

Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
Not purely linear cost 7200 RPM is common, 15000 RPM is high end
Must accelerate, coast, decelerate, settle £l Fraken

Average rotation? — I/,

Settling alone can take 0.5 - 2 ms & o M yotateon

Entire seeks often takes 4 - |0 ms

Average seek = /3 of max seek Pretty fast: depends on RPM and sector density.

|00+ MB/s is typical for maximum transfer rate

0U|Z 2 1 https://tinyurl.com/cs537-sp23-quiz2l

What is the time for 4KB
random read?

Cheetah 15K.5 Barracuda
Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105MB/s
Platters 4 4
Cache 16 MB 16/32 MB
Connects via SCSI SATA

NEXT STEPS

Advanced disk features

Scheduling disk requests

Midterm 2 soon!

