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ADMINISTRIVIA

Project 4: Grades today (hopefully?)

Project 5:How is it going? ——  (7ow

Midterm2 —7 Lonvas

Venue : Social Sciences 6210
Time :5.45pm - F:15 4m
Practice exams: Check Canvas (Files = Old Exams)
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AGENDA / LEARNING OUTCOMES

How does the OS interact with I/O devices!?

What are the components of a hard disk drive?
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OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

Make each application
believe it has each

resource to itself
CPU and Memory

| .Virtualization

Provide mutual
exclusion, ordering

2. Concurrency

3.Persistence —> T outpelt A&
s

s
" anw — s

do ¢



MOTIVATION

What good is a computer without any /O devices!?

keyboard, display, disks

We want:
- H/W that will let us plug in different devices

- OS that can interact with different combinations
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HARDWARE SUPPORT FOR 1/0
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oS CANONICAL DEVICE
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~ Status checks: polling vs. interrupts
Data transfer

Control: Invoking 1/O



EXAMPLE WRITE PROTOCOL
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write  opexahTm Status [ [ COMMAND DATA
% & o4 [ Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips
. ~ Oﬂk 7£7 "C’Q’
while (STATUS == BUSY) %WJ v M(7
7 ; // spin ="
— Write data to DATA register q1L }WA e dota
— Write command to COMMAND register
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Disk:

o 5
while (STATUS == BUSY) // 1
Write data to DATA register /] 2

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
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while (STATUS == BUSY) 7/ 1

wait for interrupt; ibhfmf& /%Ww%
Write data to DATA register /] 2 ArapTove éﬂu
Write command to COMMAND register // 3 Wﬁﬁuﬁﬁ“
-while (STATUS == BUSY) // 4

walit for interrupt;



INTERRUPTS V. POLLING

Are interrupts always better than polling?

JA :
Fast device: Better to spin than take interrupt overhead /

— Device time unknown? Hybrid approach (spin then use interrupts)

Flood of interrupts arrive ‘ A
W’j f)«%é

— Better to ignore interrupts while make some progress handling them
Other improvement

— Can lead to livelock (always handling interrupts) —

— Interrupt coalescing (batch together several interrupts)
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PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

_ Data transfer

- Control: Invoking 1/0O



DATA TRANSFER GOSTS
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PROGRAMMED I/0 VS. DIREGT MEMORY ACCESS

PIO (Programmed I/O):
— CPU directly tells device what the data is

vdware
DMA (Direct Memory Access): > bolp fvm havdia

— CPU leaves data in memory @ (VY D
M
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— Device reads data directly from memory
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while (STATUS == BUSY) 1) 1 — Lo

— DMA

Write command to COMMAND register // 3
while (STATUS == BUSY) /] 4 —  Tatervhs



PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts

PIO vs DMA

Control: Invoking 1/O



Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

while (STATUS == BUSY) // 1
Write data to DATA register /] 2

Write command to COMMAND register // 3
while (STATUS == BUSY) // 4
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SPECIAL INSTRUCTIONS VS. MEM-MAPPED |/0

2 §h et — P
Special instructions Ly Renster fot-1
— each device has a port ouT  pEliaee  PoFT

— infout instructions (x86) communicate with device
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PROTOCOL VARIANTS

Status COMMAND DATA

Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

Status checks: polling vs. interrupts
PIO vs DMA

Special instructions vs. Memory mapped I/O




DEVICE DRIVERS
vwgd
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Application
LLLLL POSIX API [gp,e_n, read, write, close, etc.]
1&1@, File System Raw
U Generic Block Interface [block read/write]
L blotk Generic Block Layer

Specific Block Interface [protocol-specific read/write]

Device Driver [SCSI, ATA, etc.] —

Howrd <SP USE
Nisk dxtve

user

kernel mode



VARIETY IS A CHALLENGE

Problem: Modalaity  — Stake 167
— many, many devices

— each has its own protocol
How can we avoid writing a slightly different OS for each H/W combination?
Write device driver for each device

. . Al 8
Drivers are 70% of Linux source code — > MMA‘*W’ of (o¢



OU |Z 20 https://tinyurl.com/cs537-sp23-quiz20

If you have a fast non-volatile memory based storage device,
which approach would work better?
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What part of a device protocol is improved by using DMA ?
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HARD DISK INTERFACE

68 powpecte
Disk has a sector-addressable address space e
Appears as an array of sectors o
Sectors are typically 512 bytes /
Main operations: reads + writes to sectors . )OQOB
feckr = " hyes

Mechanical and slow (?)
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Motor connected to spindle spins platters

=

Rate of rotation: RPM

10000 RPM - single rotation is 6 ms
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Surface is divided into rings: tracks

Stack of tracks(across platters): cylinder




Tracks are divided into
numbered sectors




Heads on a moving arm can
read from each surface.




READING DATA FROM DISK
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READING DATA FROM DISK
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TIME TO READ/WRITE

Three components:

Time = seek + rotation + transfer time

2
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SEEK, ROTATE, TRANSFER

\1 ey it drac
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Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
Not purely linear cost 7200 RPM is common, 15000 RPM is high end
Must accelerate, coast, decelerate, settle £l Fraken

Average rotation? — I/,

Settling alone can take 0.5 - 2 ms & o M yotateon

Entire seeks often takes 4 - |0 ms

Average seek = /3 of max seek Pretty fast: depends on RPM and sector density.

|00+ MB/s is typical for maximum transfer rate




0U|Z 2 1 https://tinyurl.com/cs537-sp23-quiz2l

What is the time for 4KB
random read?

Cheetah 15K.5 Barracuda
Capacity 300 GB 1TB
RPM 15,000 7,200
Average Seek 4 ms 9 ms
Max Transfer 125 MB/s  105MB/s
Platters 4 4
Cache 16 MB 16/32 MB
Connects via SCSI SATA




NEXT STEPS

Advanced disk features

Scheduling disk requests

Midterm 2 soon!



