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AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes!?

What are some similarities or differences with FFS?
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FS STRUCTS
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HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed
Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be I; else bit is 0



ORDERING FOR CONSISTENGY
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ORDERED JOURNAL
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LOG STRUCTURED FILE SYSTEM (LFS)



LFS PERFORMANCE GOAL
Motivation: e

— Growing gap between sequential and random |/O performance
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— Especially true in SSDs! _
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— RAID-5 especially bad with small random writes ,
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Idea: use disk purely sequentiall .
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WHERE DO INODES GO?
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LFS STRATEGY

4 M8 Lac-

File system buffers writes in main memory until “W g

— How much is enough?

— Enough to get good sequential bandwidth from disk (MB)
Write buffered data sequentially to new segment on disk o118 lak”
Never overwrite old info: old copies left behind ave “
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BUFFERED WRITES
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WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has I:ES removed? J’_/S::I;r R
allocation structs: data + inode bitmaps De [ | 2 Jo
— 0
How to do reads?
nger at fixed offse ; J
Inodes are no longer at offset ‘Lw W
Use imap structure to map: c > AR 0

inode number => inode location on disk




IMAP EXPLAINED
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READING IN LFS
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2. Read all imap parts, cache in mem
. To read a file: \ o otttk [M

|. Lookup inode location in imap
2. Read inode
3. Read the file block
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GARBAGE COLLECTION
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WHAT TO DO WITH OLD DATA?

Old versions of files = garbage

Approach |: garbage is a feature!

— Keep old versions in case user wants to revert files later
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— Versioning file systems” 3 Meyj 7£/e M L YA DN runbe
— Example: Dropbox

Approach 2: garbage collection
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GARBAGE COLLECTION

Need to reclaim space:
|.When no more references (any file system)

2. After newer copy is created (COWY file system)

LFS reclaims segments (not individual inodes and data blocks)

- Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid
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GARBAGE COLLECTION
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disk segments:

write it ab
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GARBAGE COLLECTION
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compact 2 segments to one

When move inode, update imap to point t point to it
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When moving data blocks, copy new inode to point to it ] &J\,\,Jﬁv &



GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

[Mechanism:

—— How does LFS know whether data in segments is valid?

Policy:
——>  Which segments to compact!
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GARBAGE GOLLECTION MECHANISM

Is an inode the latest version? /Spjmwﬂ’
— Check imap to see if this inode is pointed to Ao}
— Fast! Z\

Is a data block the latest version? r’_j

— Scan ALL inodes to see if any point to this data

— Very slow!
| How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers) ke
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o G SEGMENT SUMMARY v
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GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact!?
* clean most empty first
* clean coldest (ones undergoing least change)

* more complex heuristics...



CRASH RECOVERY
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What data needs to be recovered after a crash? MMd? /FUM L e

— Need imap (lost in volatile memory)
Better approach?
— Occasionally save to cj%a_oin_tLe_gign the pointers to imap pieces

How often to checkpoint? o
. o et (2]
— Checkpoint often: random I/O

— Checkpoint rarely: lose more data, recovery takes longer

— Example: checkpoint every 30 secs




CRASH RECOVERY
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CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?



CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint
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LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COWY file systems:WAFL, ZFS, btrfs



NEXT STEPS

Next class: SSDs!



