Holle !

PERSISTENGE: LOG-STRUCTURED FILESYSTEM

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

, Pejert £ - ”é?whuv
Project 5, 6 grading I

Project 7 out!

A6 4,
o 07
Project 8 update! —— bt

Midterm 3 conflicts s (g 1.25 < o5 pm

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes!?

What are some similarities or differences with FFS?

RECAP

FS STRUCTS

D LT

DIDIDIDIDIDIDYD
16 23
DIDIDIDIDIDRDYD
32 39
DIDIDIDIDIDRDYD
48 55

DJDIDJDIDEDIDRD
8 15
DIDJDJDIDEDRDYD
24 31
DJDIDIDIDEDIDRD
40 47
DIDIDIDIDEDEDRD
56 63

HOW CAN FILE SYSTEM FIX INCONSISTENCIES?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed
Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be I; else bit is 0

ORDERING FOR CONSISTENGY

mvef/\a/c
/ \
g T
C T 111
0 | 2 3 4 5 6 7 8 9 |0 |l 12

(rrY . ﬂ
Transaction: write C to block 4; write T to block 6 write order

‘m\J
W\/ 80 / 9,IO,II

ORDERED JOURNAL

0 I 2 3 4 5 6 7 8 9

10 | |2

'ew'rna/{ Wdia/algv WI’('@
Append to a file 9“'{3 ?f ” -
Data (D) in block 7 s Jre v flen
Inode (1) in block 4 Joka A /7
Bitmap (B) in block 2 Lok

. feas?
— irw{t

dﬁwtﬁwi 25

0U|Z 29 https://tinyurl.com/cs537-sp23-quiz28 9

Blocks

0123&_56789101112131415

T I | J
|
Bitmap Inode Journal

; 1 > (AJW'L%Z/ Mq’ M(/q .7/3{”{// N
Write 5,6 n\,(? ﬂo
Write §, 9, 10 TO{gYegK ~0wa\g/(—
Barrier ~ T © 1 Aada
Write 11
Barrier
Write 4, 2

Blocks

0|12 (3 |4|5|6|7|8|9]10(11|12|13 1415
[‘
|
Bitmap Inode

Journal

Write®) 9, 10,11,12
Barrier

Write (3

ow"“’j’; every)) i
/j "3 7 - Da](_/q ﬁowmq/[v"j

Barrier
Write 2,4,5,6

:[‘p Al 3{/(

ude
aLyvil s fon
Write 8, 9, 10,11,12-13 PR 2Vl
Barrier Wok)m %

Write 2,4,5,6

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANCE GOAL
Motivation: e

— Growing gap between sequential and random |/O performance

fote 5o

— Especially true in SSDs! _

. : : LJrite glow
— RAID-5 especially bad with small random writes ,
o FPS dogm
Idea: use disk purely sequentiall .
. 1S P Y j——é‘ Yy | s ﬁ“’j@ P 3
Design for writes to use disk sequentially — how?
yard o

5

(wv’ff%

WHERE DO INODES GO?

I iy
D, D Ve S F—W/J,:f: &ﬁc@
A T
ot in T g
E)E_k[p]:AO
D | |
A0 |
~ Wrte rode oo T /p} ode.

e e /LX)D(L | addh fyk/ /FYUYV\

LFS STRATEGY

4 M8 Lac-

File system buffers writes in main memory until “W g

— How much is enough?

— Enough to get good sequential bandwidth from disk (MB)
Write buffered data sequentially to new segment on disk o118 lak”
Never overwrite old info: old copies left behind ave “

Ly ofped e & fle I o Pk
vorsion o170 Ho - #
neals R L~

BUFFERED WRITES

YA 3 dl o
% o 1 1 L’(’O
L /MOC}U]£ OL le. —- fhm ‘mﬂ
ja A
] |
g:t ?] ﬁ? blk[0]:A5
Dio Dy Dy Dja | blk] Do
blk[3]:A n
H,ov\)
A0 A1 Inode[j] A5 Inode[k] e posov’
Uﬁ\z)fﬁ 4

[
\/Q_YX/LQ""

WQ‘"J W%ﬂ

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has I:ES removed? J’_/S::I;r R
allocation structs: data + inode bitmaps De [| 2 Jo
— 0
How to do reads?
nger at fixed offse ; J
Inodes are no longer at offset ‘Lw W
Use imap structure to map: c > AR 0

inode number => inode location on disk

IMAP EXPLAINED

v |
blk[0]:A0
I
A0 inode HatE
f,LﬂW"L MU
T
| a4
| | L —
blk[0]:A0 |map[k]:A1 /
I[K] |m‘ap ¢
AO A1 N
gt e b
L@ wfnﬂff g/

READING IN LFS

g[,‘,{ﬂaw
S%@’LLOJL imap BIK[O]:A0 [map[KI:AT
[k...k+N]: _
A2 D I[k] | imap
<= |cR
0 | : / A0 A A2 it
6""(2. w{’ roo’f L oor /w}? A o
(- ot fone SIS
[I. Read the Checkpoint region —> v v iﬂ‘ﬂ% — ek
ffYO-jm@vﬁ

2. Read all imap parts, cache in mem
. To read a file: \ o otttk [M

|. Lookup inode location in imap
2. Read inode
3. Read the file block

7(;” ey kle ved

GARBAGE COLLECTION

| oA B
DO | IK] D1 | I[K]

A0 (garbage) A4
pppurd D1 B
Lﬁ Craat <0Q e M,Oﬂe W AkiaZs

'% M ’;mo&— " vakZC

WHAT TO DO WITH OLD DATA?

Old versions of files = garbage

Approach |: garbage is a feature!

— Keep old versions in case user wants to revert files later

h‘ _ ‘7/
— Versioning file systems” 3 Meyj 7£/e M L YA DN runbe
— Example: Dropbox

Approach 2: garbage collection

L, ameve gm;,% blocks A fe Mg

GARBAGE COLLECTION

Need to reclaim space:
|.When no more references (any file system)

2. After newer copy is created (COWY file system)

LFS reclaims segments (not individual inodes and data blocks)

- Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

enk)

o

GARBAGE COLLECTION
4&;}/ 3”“2‘/ dof. JHI

disk segments:

write it ab

M"/zzft’“@"‘k

GARBAGE COLLECTION

60% 10% 95% 35% 95%

\

compact 2 segments to one

When move inode, update imap to point t point to it

-—

When moving data blocks, copy new inode to point to it] &J\,\,Jﬁv &

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

[Mechanism:

—— How does LFS know whether data in segments is valid?

Policy:
——> Which segments to compact!

‘b Gre

L} SWM e Ve ¥ LQ\‘BQ

S'%WW{Z ot 2

GARBAGE GOLLECTION MECHANISM

Is an inode the latest version? /Spjmwﬂ’
— Check imap to see if this inode is pointed to Ao}
— Fast! Z\

Is a data block the latest version? r’_j

— Scan ALL inodes to see if any point to this data

— Very slow!
| How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers) ke
T b edes

\juuw(z 5 dyfré
ALy puarro ,f;iw ’Ff s Mﬂdé
B4

ek o P

\no

T fub, eep @

" m@i"“’r]

o G SEGMENT SUMMARY v

S
0 ﬁf,;d/ 3
J,NM((Ao
e A ;hon [k]:A1 |
XUOW\ OJ:AC m.ap :
Surm &7 P ~ l'[b] mop
—A—O A1 S/O

(N, T) = SegmentSummary[A];

- - _/7

Read(imap[N]);

inode

else
// block D is garbagevy

NN

if (inodeLij/:;_EB\\\\\\\\\\\>
// block D is alive.—

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact!?
* clean most empty first
* clean coldest (ones undergoing least change)

* more complex heuristics...

CRASH RECOVERY

. X e GveY
What data needs to be recovered after a crash? MMd? /FUM L e

— Need imap (lost in volatile memory)
Better approach?
— Occasionally save to cj%a_oin_tLe_gign the pointers to imap pieces

How often to checkpoint? o
. o et (2]
— Checkpoint often: random I/O

— Checkpoint rarely: lose more data, recovery takes longer

— Example: checkpoint every 30 secs

CRASH RECOVERY

. ptrs to
memory: e fear last
checkpoint St checkpoint
m m

disk [I so| si | s2 | s3

tail after last
UAMW‘J// checkpoint

rwzm« ﬂj’W M CH*

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

s BT

(L MZT'W\
(v aph

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COWY file systems:WAFL, ZFS, btrfs

NEXT STEPS

Next class: SSDs!

