
PERSISTENCE: Log-structured FileSystem

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

ADMINISTRIVIA

Project 5, 6 grading

Project 7 out!

Project 8 update!

Midterm 3 conflicts

↳>
projects - day or two

->
Extra

credit44

5/8 7:29-9:25pm

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are some similarities or differences with FFS?

RECAP

FS StructS

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Simple AS layout
-> FFS layout

oo

How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

--

ORDERING FOR CONSISTENCY

0 5 6 12111 2 3 4 7 8 9 10

Transaction: write C to block 4; write T to block 6 write order
9,10,11

12
4,6

Journal

C T
TBegin

C I Ed
4,5

-

replay
- -

fluch journal↳
fo disk S

T

flud

Ordered Journal

Append to a file
Data (D) in block 7
Inode (I) in block 4
Bitmap (B) in block 2

I D

0 5

B

6 12111 2 3 4 7 8 9 10

only journal metadata entries

data blocks directly written 6

dist
Litmaps

-> inode
directories

QUIZ 29 https://tinyurl.com/cs537-sp23-quiz289

- - - -

↑

I

-

-> writing data blocks first

-
-
-

In
ordered journal - onlytadalioural

>

-> -

O
-

O

Journaling everything
-Data journaling

-> If exa will get

-.

replayed

↳incude."8e
-
- checksum optimization!

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Growing gap between sequential and random I/O performance
– Especially true in SSDs!
– RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

late 80s
-
-

-

Write flow

in
FFS design

-
-> large

number

random
of

writes

WHERE DO INODES GO?
"log"

· In - "Itre append
data blocks

I

log p
offsetin the log

->- -

=> -

->

-
write imode also to log
-Firstdata block, add per from

inode

LFS Strategy

File system buffers writes in main memory until “enough” data
– How much is enough?
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

4MB Large
- Sequential writes
-

writes that
-

- Sequence of

are flushed to disk
as

↳ append data
to con of

indee one
unit

How
do we

track

↳

lastsegment
written?

BUFFERED WRITES
4blocks to file I 1 block to all of

-> them are
- file

in this

legment

How
do

we know

- where
is

-we mension
mode

aree

latest
-> Do D inode

->

inode?
I

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

⑮

I I

- To De
I

20 70
--

imap offet

- S - ⑩ 70

en
-

IMAP EXPLAINED
imap
-eached in memory

-constructimap
on

boot

inderminat updates are

written to the

I log

#
imap also needs to

be written to thelog

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

Similar

'
-

&

Superblock
-
t

machine

I
only once atboottiee-

gives us in the

->

Boot up; in memory

- nothing

fragments
Ireconstructimap

-I
for every file

read

GARBAGE COLLECTION

0

Append DI tofile

↳ Created new
inode version

↳ old inode is garbage

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!
– Keep old versions in case user wants to revert files later
– Versioning file systems
– Example: Dropbox

Approach 2: garbage collection

el 1)

-> every file has version number

↳ remove garbage
blocks from

thelog

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid

-

-

Femments
latents

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

40%garbage 90%garbage

P -

I
16 ⑮write

it

a
t

pread - keepvalide

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it
-- I similar to

new
-

- appending
data

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

-
->

- oldest
↳ which are

segmentswithmostgarbage
Segments

Garbage Collection Mechanism

Is an inode the latest version?
– Check imap to see if this inode is pointed to
– Fast!

Is a data block the latest version?
– Scan ALL inodes to see if any point to this data
– Very slow!

How to track information more efficiently?
– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

segment
summary

I

-F

I
inde:ptre

to data blocks

segsummary:ptrs
from data blocks toinodes

signationisthisvalid or
not

&

Inode blocks

Data blocks
to this

- Is valid ifsome -
Check imap points

inode
inode pointsto
it

- Fast, inap is in memory

-Slow

-> requires scanning
all the inodes

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

imode for file k

Ao: (R,0]
inde" effect block20]-):AA 10

-

segment -
SO

L

.....

linesummary E

-

-
- - for thisdata

block

latest
-

->read map for inode num

version of

->
offect I

inside latestinode
inode R

-= =

e

X

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)

• more complex heuristics…

Crash Recovery

What data needs to be recovered after a crash?
– Need imap (lost in volatile memory)

Better approach?
– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
– Checkpoint often: random I/O
– Checkpoint rarely: lose more data, recovery takes longer
– Example: checkpoint every 30 secs

inap persist& recover

-

-

--

-> negate benefits lawy
e

-

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

⑦

v AI ->last checkpoint

for any segment
checkpoint

region after last
capt

recover (map

pieces

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2X
I

CR region
Crash

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses
(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: SSDs!

