) AcT zgc7uﬁé_/ ,/

NFS, SUMMARY

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Pl — by 4‘@0'{7] Formm erw(w

Project 7 grades —> Mpw X,,Lz orening
Project 8 deadline — ;| s
) 7

Quiz grades — 20 4.

Midterm 3! — /‘/\WA”‘T

AGENDA / LEARNING OUTCOMES

How to design a distributed file system that can survive partial failures?

ENhat are consistency properties for such designsﬂ

RECAP

DISTRIBUTED FILE SYSTEMS

Local FS: processes on same machine access shared files

Network FS: processes on different machines access shared files in same way

~

Goals =Y -
~Transparent access — a5 o[o & local FS — lofor
~~Fast + simple crash recovery

Reasonable performance!?

NFS ARGHITEGTURE

ind

MQM o}
Client RPC # RPC Client
{s‘ fle . —

M » Server

Client {m% Client
=

s LF

STRATEGY 3: FILE HANDLES o~

ot e
fh = open(char *path); wweth 0 [k D
pr'ead(zh (buf s.ize)offset)° %
J J J J ><
pwrite(fh, buf, size, offset); T
. Falwre
/l el
File Handle = <volume ID, inode #, generation #> S
Opaque to client (cllent should not interpret internals) fv/%/{?
/wod(5 = /alb
—
A o
L, veaxte 2 77 et

PWRITE VS APPEND

pwrite(file,“BB”, 2, 2);

file file file file
—_— I —_— AQ’BA —_— i —_— ABBA —_— I —_— ABBA
W pwrite ov pwrite pwrite
append(file,“BB”); _ Jow
~ e of
oK | obeaker —7 QJCJ[QUE N i 82

CACHE CONSISTENGY

NVFS Ser®”
C/Uo/\f MM
NFS can cache data in three places: y|
ot
- server memory memo) -
- client disk .

- client memory ’

How to make sure all versions are in sync!?

A@M U{":M

ot Veskdt DISTRIBUTED CACHE

Client | Server Client 2

NFS Local FS NFS
cache: cache: cache:
w 09 ophte Vb
(,\)-ﬂ:t'(b
fread(C) - ,{A,_

CACHE

Client | Server

write!

NFS

Local FS
cache: A

cache: B

“Update Visibility” problem: server doesn’t have latest version

What happens if Client 2 (or any other client) reads data!?

Client 2

NFS
cache: A

Client |

CACHE o et %W@A

-

Server

flush ”

Local FS

cache: B

Valne

e
Jienbs
o
Ad
M o~

/

Lt~
Client 2

“Stale Cache” problem: client 2 doesn’t have latest version

What happens if Client 2 reads data!?

W

PROBLEM 1: UPDATE VISIBILITY

" AW'J;? ?j Client |

write!

NFS

cache: B

WY ('{T_
—

Server

Local FS
cache: A

When client buffers a write, how can server (and other clients) see update!?

Client flushes cache entry to server

When should client perform flush?

NFS solution: flush on fd close

[Q/\/Q,YZ omTe _}SUOW

« e 7S

e T e w@w
e Ao frle — FLYS

PROBLEM 2: STALE CACHE

Server

Local FS

cache: B

Client 2

/B\>

(e
S

WCJ% Loty

2
NFS
cache:

Problem: Client 2 has stale copy of data; how can it get the latest?

NFS solution: (Pu\oolx @JLJ)

— Clients recheck if cached copy is current before using data

<004

0 STALE CACHE SOLUTION

L Jont odified

Server

e

@ %&d?j'fouﬁga

Local FS

cache: B

STAT
&

t2 ~—>

S
Y

Client 2

M'H’(_[

cache:A

Client cache records time when data block was fetched (tl)

Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block...)

- compare to cache timestamp

- refetch data block if changed since timestamp (t2 > tl)

t] &2

Corrp®”

MEASURE THEN BUILD

NFS developers found stat accounted for 90% of server requests
Stk
Why? ead </\)

: o N
Because clients frequently recheck cache Aondh Wex

REDUCING STAT CALLS |

Server Client2 " Cache

Local FS NFS
cache: B cache: A
Solution: cache results of stat calls |

Partial Solution: W ’

Make stat cache entries expire after a given time
(e.g., 3 seconds) (discard t2 at client 2)

\ wale
What is the consequence? ﬂmolA V\MW e 34

ok £ % \WRITE BUFFERS
%L*ﬁ/w vt f2x /?W U

Client Server

write f\

NFS 4 Local FS
o

\/

/N

—

Server acknowledges write before write is pushed to disk;
What happens if server crashes!?

SERVER WRITE BUFFER LOST

client:
write A to © Q\/ server mem: | A B C
write B to 1 DK O 2
write C tz 2 server disk: = A \X | C
O(/\M A%C Cyorbes
p gt ©

server acknowledges write before write is pushed to disk

SERVER WRITE BUFFER LOST

Client:
write A to @ | & server mem: Y | Z

(A
write B to 1 ot .

Fos server disk: X B Z (
\ W

write C to 2 AN
- . —— PBC Problem:
write X to © No write failed, but disk state doesn’t match

any point in time

write Y to 1
Solutions!?

write Z to 2 L 5

WRITE BUFFERS

Client

Server

write

NFS
write buffer

NotApp — WAFL

L
Lonrifes W

(orscerk

)
bt Mo <— Don’t use server write buffer. Problem: Slow?

Use persistent write buffer (more expensive)

e

NFS SUMMARY

NFS handles client and server crashes very well; robust APIs that are:
- stateless: servers don’t remember clients

- idempotent: doing things twice never hurts

Caching and write buffering is harder, especially with crashes

Problems: M rn debe
— Consistency model is odd (client may not see updates until 3s after file closed)

— Scalability limitations as more clients call stat() on server

- FEEDBACKI MLO(HM https://aefis.wisc.edu/

7 DL l Cow}v‘:(@r x

—2 CDW"}’ Ach
——— _ 0S — dx },QH’
VLS T —
— \) H&'YAW”L{L 7(

|.What was one idea or concept that you learnt in this course that you appreciated the most?

~ 73 wuj/ﬁ bt @,7‘0%@/ ! — Wt efply e o ghe o
ta4 |
- Tf\ﬂ/@% \ v — ﬁpg W@[
2.What are some future opportunities that you look forward to based on content from 5377
— Gfu, - /\}(,/(@(DY/L/A; - fg ’

_ pﬂ@)(h/‘? C M 2z Ho\’/a(wh{'é/

LOOKING FORWARD:
0S/FILESYSTEMS FOR THE CLOUD?

FROMMID 2006

Rent virtual computers in the “Cloud” [/}

On-demand machines, spot pricing

d m aZO n /A Microsoft Azure @

webservices™

AMAZON EG2 (2018}

cV
: Compute Units | Local Storage

Machine Memory (GB) (ECU) (GB) Cost / hour

t2.nano 0.5 I 0 $0.0058

r5d.24xlarge 244 768 +04-96 \4x900 NVMe l $6.912

- = -

x|.32xlarge 2TB 4 * Xeon E7 3.4TB (SSD) $13.338

8 Nvidia Tesla
p3.l6xlarge 488 GB V100 GPUs —> 0 $24.48

DATAGENTER EVOLUTION

Capacity:

_ Or@?w
~]0000 machines

Jo ol
dha
foeld
Bandwidth: Latency:
12-24 disks per node 256GB RAM cache

\’D,?/o 15 M'o‘fﬁlaé/

The Joys of Real Hardware
Typical first year for a new er:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures 2

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

JEFF DEAN @ GOOGLE

[0 0004 ~

The Datacenter Needs an Operating System

Matei Zaharia, Benjamin Hindman, Andy Konwinski, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica
University of California, Berkeley

1 Introduction

Clusters of commodity servers have become a major
computing platform, powering not only some of today’s
most popular consumer applications—Internet services
such as search and social networks—but also a growing
number of scientific and enterprise workloads [2]. This
rise in cluster computing has even led some to declare
that “the datacenter is the new computer” [16, 24]. How-
ever, the tools for managing and programming this new
computer are still immature. This paper argues that, due
to the growing diversity of cluster applications and users,
the datacenter increasingly needs an operating system.

and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

In addition, clusters are serving increasing numbers of
concurrent users, which require responsive time-sharing.
For example, while MapReduce was initially used for a
small set of batch jobs, organizations like Facebook are
now using it to build data warehouses where hundreds of
users run near-interactive ad-hoc queries [29].

Finally, programming and debugging cluster applica-
tions remains difficult even for experts, and is even more
challenging for the growing number of non-expert users

. A 1. T W S 1. I (PR (. [1.

DATACENTER OPERATING SYSTEMS
Resource sharing — supeldlers

<«
r,a S'i'@'fﬂ\aﬁ S‘g‘(fw kubernetes 1 ;'» ’nadaap
Data sharing YARN,
piiwead APL amazon | §3

webservices™
APACHE ‘ S
Spark’

0 pt Sowrtl

Jodkes

Programming Abstractions

Debugging

COURSE SUMMARY

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization
2. Concurrency

3. Persistence

VIRTUALIZATION

Make each application believe it has each resource to itself
CPU and Memory

Abstraction: Process AP, Address spaces —> Vivtral &7
Mechanism:

Limited direct execution, CPU scheduling

AdgESS_U*MQn (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.

CONGURRENCY

Events occur simultaneously and may interact with one another
Need to
Hide concurrency from independent processes

Py
Manage concurrency|with interacting processes P baraels
8 Y gp

Provide abstractions (locks, semaphores, condition variables etc.)
Correctness: mutu|al exclusion, ordering
Performance: scaling data structures, fairness

Common Bugs!

PERSISTENGE

— Gomw&h”? //(’ﬂﬁ% /

Managing devices: key role of OS!
Hard disk drives / S5Ds —\ DM
— Rotational, Seek, Transfer time ETL mﬂJ}on\?
Disk scheduling: FIFO, SSTF SCAN
Filesystems API
File descriptors, Inodes

e

Directories —

Hardlinks, softlinks

A% A %Ue

PERSISTENGE

Very simple FS

Inodes, Bitmaps, Superblock, Data blocks
FFS

Placement inwps,Allocation policy
LFS

Write optimized, Garbage collection

Journaling, FSCK — W/Wwb}

NFS: Partial failures retry, cache consistency

s DWLWU\

g 2 B

NEXT COURSES

CS 640: Computer Networks —— Teb, VDe

(S Got - Daknboses

CS 736:Advanced Operating Systems Seourly
(s 552 - Tifvo F
CS 739:Advanced Distributed Systems "
M

CS 744: Big Data Systems 16, -

THANK YOU!

