PERSISTENGE: SOLID-STATE DEVICES

Shivaram Venkataraman
CS 537, Spring 2023



ADMINISTRIVIA

Project 5 grades out, Project 6 (this week)
Project 7 Issues?!?

Midterm 3 conflicts (today!?)



AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes!?

How do SSDs differ from hard drives!?



RECAP



LFS STRATEGY

File system buffers writes in main memory until “enough” data

— Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

g:ﬂomo blk[0]:A5

11:A1

D D, D; D: 2 | blk[2]:A2 D
0,0] 1] i.2] 03] blkH: e [,0]

A0 A1 A2 A3 Inodelj] A5 Inodelk]



READING IN LFS

imap blk[0]:A0 |map[k]:A1
[k...k+N]: .
A2 I[K] | imap
CR
0 A0 A1 A2

|. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read afile:
|. Lookup inode location in imap
2. Read inode
3. Read the file block




GARBAGE COLLECTION

60% 10% 95% 35% 95%

\

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it



SEGMENT SUMMARY

Is an inode the latest version?

Check imap to see if this inode is pointed to

Fast!

(N, T) = SegmentSummary[A];

Read(imap[N]);

inode

if (inode[T] == A)

// block D is alive
else

// block D is garbage

blk[0]:A0
I[K]

map|[k]:A1
imap

A0

A1




CRASH RECOVERY

ptrs to
imap pieces

checkpoint s I n
| | so | st s2] s3

memory:

after last
checkpoint

tail after last
checkpoint



CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)
Upon recovery:
- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?



CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

disk



0U|Z 30 https://tinyurl.com/cs537-sp23-quiz30

bitock 10Uz f4"=" Wl [(M=x"™ Uy (“Toc™ L} // a data block

block 101: [size=1,ptr=100, type=d] // an inode

block 102: [size=0,ptr=-,type=r] // an inode

block 103: [imap: 0->101,1->102] // a piece of the imap
block 104: [SOME DATA] // a data block

block 105: [SOME DATA] // a data block

block 106: [size=2,ptr=104,ptr=105,type=r] // an inode

block 107: [imap: 0=>101;1=>106] // a piece of the imap



LFS VS FFS

File System Logging Versus Clustering: A Performance Comparison

Margo Seltzer, Keith A. Smith
Harvard University

Hari Balakrishnan, Jacqueline Chang, Sara McMains, Venkata Padmanabhan
University of California, Berkeley

A Critique of Seltzer's LFS Measurements

John Ousterhout / john.ousterhout@scriptics.com

Until ... SSDs enter the picture



NN



NAND FLASH

Single Level Cell (SLC) = | bit per cell
(faster, more reliable)

Multi Level Cell (MLC) = 2 bits per cell
(slower, less reliable)

Triple Level Cell (TLC) = 4 bits per cell
(even more so)




SS0 STRUCTURE

Flash Translation Layer

(Proprietary firmware)\\

dddddddd
/ processor SRAM
Control Bus

IIIIIIIIIII

Simplified block diagram of an SSD



SO0 PROPERTIES

Page ~ 4KB,
Block ~ 128 KB
Pagge 0 I 2 3 4 5 6 7 8 9 10 Il or 256 KB
\ J\ | 1
Y Y Y
Block 0 | 2
Read
Write

Failures: Block likely to fail after a certain number of erases
(~10000 for MLC flash, ~100,000 for SLC flash)



SSD OPERATIONS

Read a page: Retrieve contents of entire page (e.g., 4 KB)
— Cost: 25—75 microseconds
— Independent of page number, prior request offsets

Erase a block: Resets each page in the block to all Is
— Cost: |.5 to 4.5 milliseconds
— Much more expensive than reading!
— Allows each page to be written

Program (i.e., write) a page: Change selected Is to Os
— Cost is 200 to 1400 microseconds
— Faster than erasing a block, but slower than reading a page



FLASH TRANSLATION LAYER

| . Translate reads/writes to logical blocks into reads/erases/programs
2. Reduce write amplification (extra copying needed to deal with block-level erases)
3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for some SSDs



FTL: DIRECT MAPPING

Logical
pages

Y Y Y Y Y YYYYY Yy

Physical
pages




FTL: LOG-BASED MAPPING

|dea: Treat the physical blocks like a log

Table: 100 =0 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: |ai Chip

State: V E E E|i i i i/[|i i i ‘i




FTL: LOG-STRUGTURED ADVANTAGES

Avoids expensive read-modify-write behavior

Better wear levelling: writes get spread across pages,
even if there is spatial locality in writes at logical level

Challenges? Garbage!



GARBAGE COLLECTION

Table: 100 =-=0 101 -1 20002 2001—-+>3 Memory

Block: 0 1 2

Page: 00 01 02 03|{04 05 06 07|08 09 10 11 Flash
Content: |al|a2|b1|b2 Chip

State: V V. V VI|i i i i|i i i ‘i

Table: 100 =4 101 =5 20002 2001—=+>3 Memory

Block: 0 1 2

Page: 00 01 02 03|{04 05 06 07|08 09 10 11 Flash
Content: |a1|a2|b1|b2]|cl|c2 Chip

State: V V V V|V V E E|[i i i i




Steps:

Read all pages in
physical block

Write out the alive
entries to the end of
the log

Erase block (freeing it
for later use)

GARBAGE COLLECTION

Table: 100 =4 101 =5 20002 2001—=+3 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07(08 09 10 11 Flash
Content: |a1|a2|b1|b2]|c1]|c2 Chip

State: V V V V|V V E E|i i i i

Table: 100 =4 101 =5 20006 2001—=>7 Memory

Block: 0 1 2

Page: 00 01 02 03|04 05 06 07|08 09 10 11 Flash
Content: cl|c2|b1|b2 Chip

State: E E E E|(V V V V|i i i i




OVERHEADS

Garbage collection requires extra read+write traffic

Overprovisioning makes GC less painful
— SSD exposes logical space that is smaller than the physical space

— By keeping extra,“hidden” pages around, the SSD tries to defer GC to a
background task (thus removing GC from critical path of a write)

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten
— Enforces wear levelling



OVERALL PERFORMANCE

Random Sequential

Reads Writes Reads  Writes
Device (MB/s) (MB/s) (MB/s) (MB/s)
Samsung 840 Pro SSD 103 287 421 384
Seagate 600 SSD 84 252 424 374
Intel SSD 335 SSD 39 222 344 354
Seagate Savvio 15K.3 HDD 2 2 223 223




Cost per Gigabyte

012

on

o010

009

008

007

0086

005

004

003

0.02

001

0.00

Backblaze Average Cost per Gigabyte by Drive Size Over Time

Drive sales grouped by drive size and month to compute average cost per month

$500

“Wn $300

[ | | j(’m\% sz
v \ || ] V! —
A — e — — = !’- — e

i

AT = T = — [

Nov 2021 Dec 2021 Jan2022 Feb2022 Mar 2022 Apr2022 May 2022 Jun2022 Jul2022 Aug 2022 Sep 20:

2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Average Solid State Drive Price (USD) Over Last 18 Months (2.5" SATA1 TE

s 1TB e 1.5TB  wwww 2TB e 3TB @ 4TB  wwww 6TB «ow 8TB  «w 12TB  w 14TB 16TB

QBackblaze
|'TB ~ $150 on average

~1.5 cents / GB
~15 cents / GB



NEXT STEPS

Next class: Distributed Systems!



Block

A

ITage

A

\
o

——__-_-----_—--- \
-~

100111109.00100010

OlI10110]

11010011

---————————__—

To write the first page, we must first
erase the entire block

Now we can write the first page ...

... but what if we needed the data in the
other three pages?

00l 10011

\
s



