
MEMORY VIRTUALIZATION

Shivaram Venkataraman
CS 537, Spring 2023

Welcomeback!

ADMINISTRIVIA

- Project 2 is due Wednesday
- Project 1 grading in progress

- Midterm1: in-class exam

->

->
March 2nd

THE DATA BUDDIES SURVEY

• Longitudinal

•Computer science departments nationwide

•Measures students’ sense of belonging, community, pre-

college preparation, and satisfaction with program

FEEDBACK LEADS
TO CHANGE

• More emphasis on encourage student study groups

• More TA/Peer Mentor support in classes

• Increased community-building efforts

Help improve Computer
Sciences at University of
Wisconsin-Madison

Take the annual Computing
Research Association (CRA)

Survey!

Complete the

survey by

February 17th

One of TEN
Amazon gift cards!

AGENDA / LEARNING OUTCOMES

Memory virtualization
What are main techniques to virtualize memory?
What are their benefits and shortcomings?

RECAP

MEMORY VIRTUALIZATION

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

↳fragmentation

RECAP: WHAT IS IN ADDRESS SPACE?

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Static: Code and some global variables

Dynamic: Stack and Heap

->badger-fortune -> if
-
<-1-11-

-

-
④

↳ malloc

↑&
-

-

-

MEMORY ACCESS

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 3;

}

0x10:movl 0x8(%rbp), %edi
0x13:addl $0x3, %edi
0x19:movl %edi, 0x8(%rbp)

%rbp is the base pointer:
points to base of current stack frame

Instructions =Code region
↓ mem register
T

- - -*- ·--

-

-

<- - -

Memory
accesses

- Setinstruction at0x10
(code) - E

- Getdata from J.rbp +0x8 (stack)

- Get
instruction atoxis (code) basept?

~ stove data atP.rbp +048 (stack)

MEMORY ACCESS

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter)

MEMORY ACCESS

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

Initial %rip = 0x10
%rbp = 0x200

%rbp is the base pointer:
points to base of current stack frame

%rip is instruction pointer (or program counter)

Fetch instruction at addr 0x10
Exec:

load from addr 0x208

Fetch instruction at addr 0x13
Exec:

no memory access

Fetch instruction at addr 0x19
Exec:

store to addr 0x208

- =

QUIZ 6
int x;
int main(int argc, char *argv[]) {
int y;
int* z = malloc(sizeof(int)););

}

Address Location

x

main

y

z

*z

Possible locations:
static data/code, stack, heap

https://tinyurl.com/cs537-sp23-quiz6

*

⑲

static data I code

code

stack

stack

heap

MEMORY VIRTUALIZATION: MECHANISMS

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries
How to avoid collisions?

Possible Solutions for Mechanisms (covered in this class):
1. Time Sharing
2. Static Relocation
3. Base
4. Base+Bounds

-> Transparency
process I

<

inty;OxI
Process 2

intX;0 +10

code
data
Program

Memory

TIME SHARE MEMORY: EXAMPLE

code

1leap fep1

addr -

back stack~#Iwhen Iswitch
load P2 into

memory

=cpU virtualization

PROBLEMS WITH TIME SHARING?

Ridiculously poor performance

Better Alternative: space sharing!
At same time, space of memory is divided across processes
Remainder of solutions all use space sharing

How towitch addr spaces
>

-> waste memorymight

2) Static Relocation

Idea: OS rewrites each program before loading it as a process in memory
Each rewrite for different process uses different addresses and pointers
Change jumps, loads of static data

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010:movl 0x8(%rbp), %edi
0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

rewrite

rewrite

(2) Rewrite not

easy
to do?

Violates
(1) protection

morl 0x3042 yediE.
=

=.

-

0x3000

(free)

Program Code

stack

Heap

(free)

Program Code

stack

Heap

(free)

(free)

(free)
4 KB

8 KB

12 KB

16 KB

process 1

process 2

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010:movl 0x8(%rbp), %edi
0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

Static: Layout in Memory

C

Static Relocation: Disadvantages

No protection
– Process can destroy OS or other processes
– No privacy

Cannot move address space after it has been placed
– May not be able to allocate new process

3) Dynamic Relocation
Goal: Protect processes from one another
Requires hardware support

– Memory Management Unit (MMU)
MMU dynamically changes process address at every memory reference

– Process generates logical or virtual addresses (in their address space)
– Memory hardware uses physical or real addresses

CPU MMU
Memory

Process runs here OS can control MMU

Logical address Physical address

mor 0x1000 yed:het,100 043000

X0x3000
>

-
thaladdress

Hardware Support for Dynamic Relocation
Privileged (protected, kernel) mode: OS runs

– When enter OS (trap, system calls, interrupts, exceptions)
– Allows certain instructions to be executed

(Can manipulate contents of MMU)
– Allows OS to access all of physical memory

User mode: User processes run
– Perform translation of logical address to physical address

a - timer interrupt
-

I new 485 instructions

-

-

->

Sconfigure Mo
10-1 los

user

Implementation of Dynamic Relocation: BASE REG
Translation on every memory access of user process
MMU adds base register to logical address to form physical address

base moderegisters
32 bits 1 bit

mode
=

user?

no

yes

+
base

logical
address

physical
address

MMU

choose P2, OS updates
base register

MMU
oS configures 0x3000
to setbase register:

->3000

Get0x3100

0x100

0x100 0x3100

-

Dynamic Relocation with Base Register
Translate virtual addresses to physical by adding a fixed offset each time.

Store offset in base register

Each process has different value in base register
Dynamic relocation by changing value of base register!

- Dynamic
velocation makes it possible tomore processes

rustine
at

- still lack protection:clever process
could still read

another process memory

4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

VISUAL Example of
DYNAMIC RELOCATION:
BASE REGISTER

P1: load 10, R1

Virtual

P1: load 200, R1

P2: load 500, R1

Base Register for P1 = 2048

Base Register for P2 = 3072

Physical
P1

P2

= =

--

->

virtual address
⑤

↑
2048 + 10:2058

--

2048 +200
=2248

· -

3072
+500:3572

↓ -

Context

switch

QUIZ 7 https://tinyurl.com/quiz7-sp23

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1
Virtual

P2: load 1000, R1

P1: store 3072, R1

& CS537-sp23-quiz7

1024 +100
=1124

-

4096 +1000
=509)

3
-

1024 +3072:4096

·

<- violating protection

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 1000, R1 load 5096, R1

P1: store 3072, R1 store 4096, R1 (3072 + 1024)

4) Dynamic with Base+Bounds

Idea: limit the address space with a bounds register

Base register: smallest physical addr (or starting location)
Bounds register: size of this process’s virtual address space

– Sometimes defined as largest physical address (base + size)

OS kills process if process loads/stores beyond bounds

- - plonypae
2024

bound =1000

bound
=
2024

Implementation of BASE+BOUNDS
Translation on every memory access of user process
• MMU compares logical address to bounds register

if logical address is greater, then generate error
• MMU adds base register to logical address to form physical address

base modeboundsregisters
32 bits 32 bits 1 bit

mode
=

user?

<
bounds?

no

no

yes

yes +
base

error

logical
address

physical
address

raiseexception@

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

bounds register
-

&

each process
could have

differentaddspace
nize

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1
Virtual Physical

P2: load 100, R1 load 4196, R1
P2: load 1000, R1 load 5196, R1
P1: load 100, R1 load 2024, R1

Can P1 hurt P2?

P1: store 3072, R1

Base +bounds

does not

I
enable sharing

- -

check
MMU will

if 1024
+3072<2048

Not
true

L the
error

raise an

oS

Managing Processes with Base and Bounds
Context-switch: Add base and bounds registers to proc struct
Steps

– Change to privileged mode
– Save base and bounds registers of old process
– Load base and bounds registers of new process
– Change to user mode and jump to new process

Protection requirement
• User process cannot change base and bounds registers
• User process cannot change to privileged mode

- --
-

- -

Assumptions that1 yield protection

Base and Bounds
Advantages

Provides protection (both read and write) across address spaces
Supports dynamic relocation

Can place process at different locations initially and move address spaces

Simple, inexpensive implementation: Few registers, little logic in MMU

Disadvantages
Each process must be allocated contiguously in physical memory
Must allocate memory that may not be used by process
No partial sharing: Cannot share parts of address space

-

5) Segmentation

Divide address space into logical segments
– Each segment corresponds to logical entity in address space

(code, stack, heap)

Each segment has separate base + bounds register

2n-1

Stack

Code

Heap

0

Code base, bounds register

Heap base,
bounds

stack base, bounds

Segmented Addressing

Process now specifies segment and offset within segment
How does process designate a particular segment?

– Use part of logical address
• Top bits of logical address select segment
• Low bits of logical address select offset within segment

What if small address space, not enough bits?
– Implicitly by type of memory reference
– Special registers

Process
↳segment
↳ address within

segment

-

a 8-bit
01 10 1000 address
--.

↓

2 - bits

selectsegment

Segmentation Implementation

Segment Base Bounds R W
0 0x2000 0x6ff 1 0
1 0x0000 0x4ff 1 1
2 0x3000 0xfff 1 1
3 0x0000 0x000 0 0

MMU contains Segment Table (per process)
• Each segment has own base and bounds, protection bits
• Example: 14 bit logical address, 4 segments;

remember:
1 hex digit à 4 bits

How many bits
for segment?

How many bits
for offset?

- can
read

process
butnot

to this
write

2 site segmentoneo
-

12 bits affect

heap (seg1)

stack (seg2)
0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

load 0x2010, R1

Virtual (hex) Physical

Segment numbers:
0: code+data
1: heap
2: stack

Visual Interpretation

load 0x1010, R1

load 0x1100, R1

<

number is segment no:
2

each

& 0x 010 =0x1610
4 bits

#- 0x1600 t offset 10x018

14bitaddr 6 00010000 0x400 +01010
·1 1
-

=

0x 410

base register

0x408

= 600

heap (seg1)

stack (seg2)

load 0x2010, R1

Virtual Physical

load 0x1010, R1

load 0x1100, R1

Segment numbers:
0: code+data
1: heap
2: stack

0x1600

0x2000

0x2400

0x800

0x1200

0x400

0x00

0x400 + 0x010 = 0x410

0x1600 + 0x010 = 0x1610

0x400 + 0x100 = 0x500

Quiz 8!

Segment Base Bounds R W
0 0x2000 0x6ff 1 0
1 0x0000 0x4ff 1 1
2 0x3000 0xfff 1 1
3 0x0000 0x000 0 0

Translate logical (in hex) to physical

0x0240:

0x1108:

0x265c:

0x3002:

Remember:
1 hex digit à 4 bits

https://tinyurl.com/cs537-sp23-quiz8

HOW DOES THIS LOOK IN x86

Stack Segment (SS): Pointer to the stack
Code Segment (CS): Pointer to the code
Data Segment (DS): Pointer to the data

Extra Segment (ES): Pointer to extra data
F Segment (FS): Pointer to more extra data
G Segment (GS): Pointer to still more extra data

NOTE: HOW DO STACKS GROW ?

Stack goes 16K à 12K, in physical memory is 28K à 24K
Segment base is at 28K

Virtual address 0x3C00 = 15K
à top 2 bits (0x3) segment ref, offset is 0xC00 = 3K

How do we make CPU translate that ?

Negative offset = subtract max segment from offset
= 3K – 4K = -1K

Add to base = 28K – 1K = 27K

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Advantages of Segmentation

Enables sparse allocation of address space
Stack and heap can grow independently
• Heap: If no data on free list, dynamic memory allocator requests more from OS

(e.g., UNIX: malloc calls sbrk())
• Stack: OS recognizes reference outside legal segment, extends stack implicitly

Different protection for different segments
• Enables sharing of selected segments
• Read-only status for code

Supports dynamic relocation of each segment

Disadvantages of Segmentation

Each segment must be allocated contiguously

May not have sufficient physical memory for large segments?

External Fragmentation

NEXT STEPS

Project 2: Due Wednesday!

Next class: Paging, TLBs and more!

