
MEMORY: SMALLER PAGE TABLES AND SWAPPING

Shivaram Venkataraman
CS 537, Spring 2023

Hello!

ADMINISTRIVIA
Project 3 is due Monday.
Project 4: Scheduling out next.

Midterm 1: In class midterm, Multiple choice
Soon: Practice exams, Review session details

-> start now ifyou
haven't

->
March 2. Virtualization

CPU/ Mem

AGENDA / LEARNING OUTCOMES

Memory virtualization
What are the challenges with paging ?
How we go about addressing them?

How we support virtual mem larger than physical mem?
What are mechanisms and policies for this?

RECAP

PROS/CONS of Paging

Pros
No external fragmentation

– Any page can be placed in any
frame in physical memory

Fast to allocate and free
– Alloc: No searching for suitable

free space
– Free: Doesn’t have to coalesce

with adjacent free space

Cons
Additional memory reference

- MMU stores only base address of
page table

Storage for page tables may be substantial
- Simple page table: Requires PTE for
all pages in address space
- Entry needed even if page not
allocated ?

&
Pagetable

↳
for every process

TLB Summary

Pages are great, but accessing page tables for every memory access is slow
Cache recent page translations àTLB

– MMU performs TLB lookup on every memory access

TLB performance depends strongly on workload

TLBs increase cost of context switches
– Flush TLB on every context switch
– Add ASID to every TLB entry

In different systems, hardware or OS handles TLB misses

④

a sequentialitforty
for a

process

WHY ARE PAGE TABLES LARGE?

PFN valid prot

10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid
storing these?

one entry
UPN

for each
-

↳ ~ only 4 entries
valid

are

The westare

all invalid
-

~

Multilevel Page Tables

Creates multiple levels of
page tables

Only allocate page tables
for pages in use

Allow page table to be
allocated non-contiguously

large array Tree-like
-(B-Tree)

↑
&

2 ↓

XX -.

-

XX ⑥ &Page Directory

9 ↓
11]

1⑩
2 pages useful, I empty 201 275212 V

Multilevel Translation EXAMPLE
PPN
0x3
-
-
-
-
-
-
-
-
-
-
-
-
-
0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

- .
-

5
7 <-

7
-

outer page
=0

P7g043 is inner
PT

inner page
=1

0x23 < ABC7

↳ final PA

4KB
->

- ...-

MORE THAN 2 levels?
Problem: page directories (outer level) may not fit in a page

Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1
VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
(each page table fits in page)

4KB / 4 bytes à 1K entries per level

1 level:
2 levels:

outer page? (__ bits) inner page (10 bits) page offset (12 bits)
64-bit address:

Inner PT fits in

one page

· 42
-

~

1

&

·y
--

y4TB =4MB

1k X1k x4kB =49B

- -

Example: x86-64
Virtual address: 48 bits

– Upper 16 bits are sign extended (all 0, all 1)
Physical address: 48 bits

PTE size = 48 bits + metadata = 8 bytes
PTEs/4kb page = 512 = 9bits

- /Ia

- 64bits
⑥

Virtual address
48

- - 4k3/8
- -

·

I-obytesseries
4KB

x
- -
-

-↑

-

↓
- - - &

1 bts if ⑦ level paging scheme
> 4 mem

46 access

On TLB miss: lookups with more levels more expensive
Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore ops changing TLB)

(a) 0xAA10: addl $0x5, %edh

(b) 0xBB13: addl $0x3, %edi

ASID VPN PFN Valid

211 0xbb 0x91 1
211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

FULL SYSTEM WITH TLBS

2 &
-

&
--

3 men access fortranslation 4physical accesses

I for instruction

-

1men
access for instruction fetch

Inverted Page TAble
Only store entries for virtual pages w/ valid physical mappings

Naïve approach:
Search through data structure <ppn, vpn+asid> to find match
Too much time to search entire table

prop:
space savings

-

↓valid

7

Inverted Page TAble
Better:

Find possible matches entries by hashing vpn+asid
Use chaining to handle collisions
Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

Used in IBM POWER and Intel Itanium, but complicated

UpN+AsidHash table:

- 30s needsto

-

QUIZ 12

Consider a virtual address space of 16KB with 64-byte pages.
1. How many bits will we have in our virtual address for this address
space?

2.What is the total number of entries in the Linear Page Table for such an
address space?

3.Consider a two-level page table now with a page directory. How many
bits will be used to select the inner page assuming PTE size = 4 bytes?

https://tinyurl.com/cs537-sp23-quiz12

-
1

log. (16kB) =elog(27.2"):14 bits abytes-

Estes
T

·space 2.*... is
->

14 bits -> 6 bits offet
=log (64)

ps
= 4 bit to select

16 entries in my inner

Quiz12
PPN
0x3
-
-
-
-
-
-
-
-
-
-
-
-
-
0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

translate 0xFEED0

& 1

-B

: outer page :F

bits

Typo
bits

092
get

nextinner page

↑ i =E

⑭ gives
is
OXSSEDO

=
2 men accesses

EFFECT OF PAGE SIZE

int sum = 0;
int a[1024*1024];
for (i=0; i<1024*1024; i++) {

sum += a[rand() %
(1024*1024)];

}

Miss rate of TLB: # TLB misses / # TLB lookups

TLB lookups? number of accesses to a =

Chance of a TLB miss?
=

Assume 2MB pages
32 TLB entries

Assume 4KB pages
32 TLB entries

TLB lookups? number of accesses to a =

Chance of a TLB miss?
=

-1024pages menties
1 - 32/1024

IM lookups

524,288 intoin 1page I M lookups
=>

2pages

--

· 2 /,M

LARGE PAGES (HUGE PAGES)
TLB reach: how much memory can be accessed without a TLB miss?

1000 entries 4KB pages à 4MB

Large pages
1000 entries, 2MB pages à 2GB!

How to use?
• Programmer requested: mmap(MAP_HUGE) returns huge pages
• Transparent Huge Pages (THP, in Linux)

– OS uses huge pages when available for > 2MB allocations

17
-> Lim x

TRANSLATING LARGE PAGES
HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels à 4 memory accesses

2MB pages:

Page Map Lvl 4
(bits) page offset (bits)Page Pointer Dir.

(bits)
Page Directory

(bits)

>

* log(22) =

21 ->

9 9 9

Downside: Fragmentation within page

SHARING with PAGE TABLES
⑨

⑨

1.

-

!

-

-

Summary: Better PAGE TABLES

Problem: Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure
– Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
– Multi-level page tables used in x86 architecture
– Each page table fits within a page

Large pages can reduce TLB use and number of accesses for translation
.
-

SWAPPING

Motivation
OS goal: Support processes when not enough physical memory

– Single process with very large address space
– Multiple processes with combined address spaces

User code should be independent of amount of physical memory
– Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

– Relies on key properties of user processes (workload)
and machine architecture (hardware)

-
#B

code
data
Program

Virtual Memory

-speciaFMRT
IF temp.

on disp
6

pages inemer

swapping

Locality of Reference

Leverage locality of reference within processes
– Spatial: reference memory addresses near previously referenced addresses
– Temporal: reference memory addresses that have referenced in the past
– Processes spend majority of time in small portion of code

• Estimate: 90% of time in 10% of code
Implication:

– Process only uses small amount of address space at any moment
– Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

– Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

– Same behavior as if all of address space in main memory

Requirements:
– OS must have mechanism to identify location of each page in address space à

in memory or on disk
– OS must have policy to determine which pages live in memory and which on disk

Virtual Address Space Mechanisms
Each page in virtual address space maps to one of three locations:

– Physical main memory: Small, fast, expensive
– Disk (backing store): Large, slow, cheap
– Nothing (error): Free

Extend page tables with an extra bit: present
– permissions (r/w), valid, present
– Page in memory: present bit set in PTE
– Page on disk: present bit cleared

• PTE points to block on disk
• Causes trap into OS when page is referenced
• Trap: page fault

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

– if TLB hit, address translation is done; page in physical memory
Else TLB miss...

– Hardware or OS walk page tables
– If PTE designates page is present, then page in physical memory

page fault (i.e., present bit is cleared)
Else

– Trap into OS (not handled by hardware)
– OS selects victim page in memory to replace

• Write victim page out to disk if modified (use dirty bit in PTE)
– OS reads referenced page from disk into memory
– Page table is updated, present bit is set
– Process continues execution

SWAPPING Policies

SWAPPING Policies

Goal: Minimize number of page faults

– Page faults require milliseconds to handle (reading from disk)
– Implication: Plenty of time for OS to make good decision

OS has two decisions
– Page selection

When should a page (or pages) on disk be brought into memory?

– Page replacement
Which resident page (or pages) in memory should be thrown out to disk?

Page Selection
Demand paging: Load page only when page fault occurs

– Intuition: Wait until page must absolutely be in memory
– When process starts: No pages are loaded in memory
– Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
– OS predicts future accesses (oracle) and brings pages into memory early
– Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references
– User specifies: may need page in future, don’t need this page anymore, or

sequential access pattern, ...
– Example: madvise() in Unix

Page Replacement
Which page in main memory should selected as victim?

– Write out victim page to disk if modified (dirty bit set)
– If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future
– Advantages: Guaranteed to minimize number of page faults
– Disadvantages: Requires that OS predict the future; Not practical, but good for

comparison

Page Replacement
FIFO: Replace page that has been in memory the longest

– Intuition: First referenced long time ago, done with it now
– Advantages: Fair: All pages receive equal residency; Easy to implement
– Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
– Intuition: Use past to predict the future
– Advantages: With locality, LRU approximates OPT
– Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well

Page Replacement

Page reference string:
DDBBACBDBD

OPT FIFO LRU

B
B

A

C

B

D

Three pages
of physical
memory

Metric:
Miss count

D

D

B
D

Page Replacement Comparison

Add more physical memory, what happens to performance?
LRU, OPT:
• Guaranteed to have fewer (or same number of) page faults
• Smaller memory sizes are guaranteed to contain a subset of larger memory sizes
• Stack property: smaller cache always subset of bigger

FIFO:
• Usually have fewer page faults
• Belady’s anomaly: May actually have more page faults!

Fifo Performance may Decrease!

Consider access stream: ABCDABEABCDE

Physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

Implementing LRU
Software Perfect LRU

– OS maintains ordered list of physical pages by reference time
– When page is referenced: Move page to front of list
– When need victim: Pick page at back of list
– Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
– Associate timestamp register with each page
– When page is referenced: Store system clock in register
– When need victim: Scan through registers to find oldest clock
– Trade-off: Fast on memory reference, slow on replacement (especially as size of

memory grows)
In practice, do not implement Perfect LRU

– LRU is an approximation anyway, so approximate more
– Goal: Find an old page, but not necessarily the very oldest

Clock Algorithm
Hardware

– Keep use (or reference) bit for each page frame
– When page is referenced: set use bit

Operating System
– Page replacement: Look for page with use bit cleared

(has not been referenced for awhile)
– Implementation:

• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits as search
• Stop when find page with already cleared use bit, replace this page

Clock: Look For a Page

0 1 2 3 …Physical Mem:

Use= Use= Use= Use=

clock hand

Clock Extensions

Replace multiple pages at once
– Intuition: Expensive to run replacement algorithm and to write single block to disk
– Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
– Intuition: More expensive to replace dirty pages

Dirty pages must be written to disk, clean pages do not
– Replace pages that have use bit and dirty bit cleared

SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation

- Contiguous memory: base, bounds, segmentation
- Using fixed sizes pages with page tables

Challenges with paging
- Extra memory references: avoid with TLB
- Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

NEXT STEPS

Project 3: Due soon!

