Weltore, — Jack !

MEMORY: SWAPPING

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 3 was due Monday. 7
Project 4: Scheduling new dates: Feb 22 to March 6t~ 7 weks

Midterm I:In class midterm, Multiple choice.
No notes / calculators. (We will give a table of powers of 2)

—> Old exams on Canvas Vide ‘%‘%W
0
—> Discussion: Practice problems

L Padot
— 7&9{(’70&’{2

OFFICE HOURS
Studets - Syprvete iz)% fov g o

|. One question per student at a time | Toitizer
T

2. Please be prepared before asking questions fun Adoivek

3. 5 The TAs might not be able to fix your problem —

4.\ Limited time per student — 10 winb

Do

|. Increase number of TAs close to deadline

2. Study groups
Lo M dderm

AGENDA / LEARNING OUTCOMES

Memory virtualization
How we support virtual mem larger than physical mem?

What are mechanisms and policies for this?

RECAP

MULTILEVEL, INVERTED PAGE TABLES

PPN VPN Prot

Multi-level Page Table j,l non
gD*W rl PDBR] 200 | Talle
ke = 5
1 % 7 S PEN S 5 PFN
g 201 —— 1] x 12 >
TLB Z [0 - Of - — £
& ('
a [q 204 — 1 rw 100 o

The Page Directory

[Page 1 of PT: Not Allocated]

[Page 2 of PT: Not Allocated]

L

rw 86
rw 15

PFN 204

TRANSLATING LARGE PAGES

HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels = 4 memory accesses

21-12 1-0

-
47 - 39 38-30 29-21
Page Map Lvl 4 Page Pointer Dir. Page directory
(9 bits) (9 bits) (9 bits)

(9 bits)

2MB pages: 2 /L@\/‘U{A — 3 mWﬂ ACCOM Fralalon

Page Map Lvl 4
(bits)

Page Pointer Dir.
(bits)

Page Directory
(bits)

page offset (2) bits)

k7ZMB

SUMMARY: BETTER PAGE TABLES
tags

Problem: Simple linear page tables require too much contiguous memory J
(codre)
LR
Many options for efficiently organizing page tables L

If OS traps on TLB miss, OS can use any data structure
— Inverted page tables (hashing) —— vedu e Fﬂj‘
If Hardware handles TLB miss, page tables must follow specific format jnveﬁ@!

’b‘ul /1/:16 M;{ﬁ %@‘/&(7

— Multi-level page tables used in x86 architecture

— Each inner page table fits within a page

Large pages can reduce TLB use and number of accesses for translation

SWAPPING

MOTIVATION

OS goal: Support processes when not enough physical memory C hrome s
— Single process with very large address space 0o ek
— Multiple processes with combined address spaces g Tab A
User code should be independen;of amount of physical memory ‘
. (')YOCW W?
— Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory =
Why does this work? K oy | po
— Relies on key properties of user processes (workload) mern
and machine architecture (hardware) Swep ve0d

WORKLOAD PROPERTIES

LRV
(]l::’Y Cpujxe.

Achemes
Leverage locality of reference within processes

Spatial: reference memory addresses near previously referenced addresses

—\-Temporal: reference memory addresses that have referencean the past

— Processes spend majority of time in small portion of code mwﬂ%f
* Estimate: 90% of time in 10% of code

Implication:

— Process only uses small amount of address spacelat any moment/

— Only small amount of address space must be resident in physical memory

HARDWARE: MEMORY HIERARCHY

Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

main memory

disk storage

SWAPPING INTUITION a7k 77

|dea: OS keeps unreferenced pages on disk
— Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
. C__—-

OS and hardware cooperate to make large disk seem like memory
— Same behavior as if all of address space in main memory

Requirements:
— OS must have mechanism to identify location of each page in address space 2>

in memory or on disk
— OS must have ep/ol/icy to determine which pages live in memory and which on disk

VIRTUAL ADDRESS SPACE MECHANISMS

o . e O
Each page in virtual address space maps to one of three locations:

— Physical main memory: Small, fast, expensive “a Preserk
— Disk (backing store): Large, slow, cheap
— Nothing (error): Free

Extend page tables with an extra bit: present

— permissions (r/w), valid,[present|
— Page in memory: present bit set in PTE

— Page on disk: present bit cleared

* PTE points to block on disk

* Causes trap into OS when page is referenced
« [Trap: page fault
'Fap. page tautt

Fable
Lonr Ty
Disk
28 PFN valid prot present
10 | r-X |
-0 - -
23 | rw- 0
-0 - -
0
0
Phys Memory - 8)]
% [/’_’7)L - 8 - -
] PR . A trap - Fagc M

-

rw- @ v
W %j - Pesd W “”M

What if access vpn Oxb?

VIRTUAL MEMORY MECHANISMS

First, hardware checks TLB for virtual address

Else

if TLB hit, address translation is done; page in physical memory

Hardware or OS walk page tables
If PTE designates page is present, then page in physical memory .
(i.e., present bit is cleared)

MS (r.\ot hand.Ied by hardware) /7 dorge fre)97@

OS selects(victim page)m memory to replace WW,@{ 3
* Write victim page out to disk if modiﬁecin(use dirty bit in@

OS reads referenced page from disk into memory

Page table is updated, present bit is set sk 7

Process continues execution

SWAPPING POLICIES

SWAPPING POLICIES

Goal: Minimize number of page faults

— Page faults require milliseconds to handle (reading from disk) ke TLB4
— Implication: Plenty of time for OS to make good decision ——~

OS has two decisions
— Page selection
When should a page (or pages) on disk be brought into memory?

— Page replacement
Which resident page (or pages) in memory should be thrown out to disk?

o ¢uited

Mrondd we

PAGE SELECTION — f;; o e

disle?

Demand paging: Load page only when page fault occurs Jirtmal A%
— Intuition:Wait until page must absolutely be in memory), o 4
— When process starts: No pages are loaded in memory L —
— Problems: Pay cost of page fault for every newly accessed page K% Z}

prefokely i
Prepaging (anticipatory, prefetching): Load page before referenced //

— OS predicts future accesses (oracle) and brings pages into memory early
— Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references
— User specifies: may need page in future, don’t need this page anymore, or

NS uential access pattern, ... ’
CI P j vv'\lﬁ oCceMs M F“jﬁ

— Example: madvisEQin/Un'l_/_r—> NPT : 273

PAGE REPLACEMENT — 7

/% 04

Which page in main memory should selected as victim?
— Write out victim page to disk if modified (dirty bit set)

— If victim page is not modified (clean), just discard N

AlD
OPT: Replace page not used for longest time in future W"fw

- e
— Advantages: Guaranteed to minimize number of page faults o

— Disadvantages: Requires that OS predict the future; Not practical, but good for
comparison

PAGE REPLACEMENT

FIFO: Replace page that has been in memory the longest

—_—

— Intuition: First referenced long time ago, done with it now

Coak T, Fok DA

— Advantages: Fair: All pages receive equal residency; Easy to implement
— Disadvantage: Some pages may always be needed in e
L A K
L)RU: Least-recently-used: Replace page not used for longest time in past
— Intuition: Use past to predict the future
— Advantages: With locality, LRU approximates OPT
— Disadvantages:
* Harder twent, must track which pages have been accessed

* Does not handle all workloads well Aot W 1%(} accers Home

o prysca PAGE REPLACEMENT

memory
it Mg OPT FIFO 6w« LRU
"M D |D M| D
Page reference string: H D | D oD
DDBBACBDBD MB |D|B MIDIB
B [D |8 H (D |B
mA D x]MDe]A
Metric: M C[2]B |CIM[C]B|A
Miss count A B HlC|B | A
4 w2 H D M| | A
1 B Mmic|D|B
¥ D H

0U|Z 1 3 https://tinyurl.com/cs537-sp23-quiz|3

Page reference string: ABCABDADBCB

OPT FIFO =7 LRU - 5

Metric: 3ABC | Alelc]| 2|Als || 3| AR |
Miss count 0A Aol

H B Ale | &
Three pages & D|A|p [D| MD|e |[c Al P | D
of physical
memory HA MDA S

) # :

) mp|Alp | 4| A [P

W B H H

PAGE REPLACEMENT COMPARISON

ALCONS ey %3%7%

Add more physical memory, what happens to performance!? 5 messes
LRU, OPT: T o
* Guaranteed to have fewer (or same number of) page faults ey

* Smaller memory sizes are guaranteed to contain a subset of larger memory sizes

e Stack property: smaller cache always subset of bigger

FIFO:

* Usually have fewer page faults
aceeMs

* Belady’s anomaly: May actually have more page faults! /Fw o
g [9%%

FIFO PERFORMANGE MAY DECREASE!

Consider access stream: ABCDABEABCDE
Physical memory size: 3 pages vs. 4 pages m

How many misses with FIFO? 3 M /ch A B, C
mo Jor D
\Avw?fvw‘)ig M qu/ 4
moFr b
G

M

IMPLEMENTING LRU

— OS maintains ordered list of physical pages by reference time
— When page is referenced: Move page to front of list Aor T
— When need victim: Pick page at back of list Lated freﬁt@y@m“’
— Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU /—\; oibie farg T)
— Associate timestamp register with each page J a

— When page is referenced: Store system clock in register faj’@

— When need victim: Scan through registers to find oldest clock

— Trade-off: Fast on memory reference, slow on replacement (especially as size of
memory grows)

In practice
LRU is an approximation anyway, so approximate more!?

CLOCK ALGORITHM — " A g

Lok ve conthy

Hardware - iji e

— Keep use (or reference) bit for each page frame -

— When page is referenced: set use bit Jock g Aere
Operating System N It

— Page replacement: Look for page with use bit cleared S

(has not been referenced for awhile) e
ik =0

— Implementation:
* Keep pointer to last examined page frame
* Traverse pages in circular buffer
* Clear use bits as search
* Stop when find page with already cleared use bit, replace this page

CLOCK: LOOK FOR A PAGE

0O X B L L .
Use=/% Use= ﬂ//Use—W Use= X

Physical Mem: 0 O 24 3

1
clockfhan?) 1\ — T 7 /j\

L - coped
Use = 1,1,0,1 to begin ?&56 D u &t
Fuvick a P"{“\a o A((n
- ?P:iik L T by~ .
! gkt LA

CLOCK EXTENSIONS

Replace multiple pages at once
— Intuition: Expensive to run replacement algorithm and to write single block to disk
— Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
— Intuition: More expensive to replace dirty pages
Dirty pages must be written to disk, clean pages do not
— Replace pages that have use bit and dirty bit cleared

SUMMARY: VIRTUAL MEMORY

Abstraction:Virtual address space with code, heap, stack
Address translation

- Contiguous memory: base, bounds, segmentation

- Using fixed sizes pages with page tables
Challenges with paging

- Extra memory references: avoid with TLB

- Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

NEXT STEPS

Next class: New module on Concurrency!

