
MEMORY: TLBS, SMALLER PAGETABLES

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

- Project 3 is due Monday
- Project 1 grades

than PI/P2
->more code

↳ Check Diazza

AGENDA / LEARNING OUTCOMES

Memory virtualization
What are the challenges with paging ?
How we go about addressing them?

RECAP

Paging
Goal: Eliminate requirement that address space is contiguous

Idea:
Divide address spaces and physical
memory into fixed-sized pages

Example page size: 4KB

Process 1 Process 2

Logical View

Ph
ys

ic
al

 V
ie

w

Process 3

1aBphys men

4 kBPages
>

-

Page &

table -

⑨
- ->

PAGING TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages – 12 bit offset

Simplified view
of page table

2
0
3
4

14 bit addresses

READ 0x1100

mapping
VPN to PPN

↑ -

E -- mon -> 5000

- 5004
--*

-

N
00100

14bit 0 +1 100

r
-> offset 0+0100

0x0 100 =

u -
= SitsN

->PPN

PROS/CONS of Paging

Pros
No external fragmentation

– Any page can be placed in any
frame in physical memory

Fast to allocate and free
– Alloc: No searching for suitable

free space
– Free: Doesn’t have to coalesce

with adjacent free space

Cons
Additional memory reference

- MMU stores only base address of
page table

Storage for page tables may be substantial
- Simple page table: Requires PTE for
all pages in address space
- Entry needed even if page not
allocated ?

translation
every

↳ access PTE↑ ↳ desired address

-

Strategy: Cache Page Translations
CPU RAM

memory interconnect

PT
Translation Cache

Tag (virtual page number) Physical page number (page table entry)

TLB Entry

Fully associative

Any given translation can be anywhere in the TLB
Hardware will search the entire TLB in parallel

fast or
to

cheap
access
< dower

minimize
->

--

Virt Phys

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB
PT

P1 pagetable
1 5 4 …

P2
28 KB

TLB Accesses: SEQUENTIAL Example

load 0x1000
load 0x1004
load 0x1008
load 0x100c
…
load 0x2000
load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
…
load 0x0008
load 0x4000
(TLB hit)
load 0x4004

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

1 1 5

=1 In
->

load

(i i)
=-

i

1

Cashe

QUIZ 10: TLBs
Consider a processor with 16-bit address space and 4kB page size.
Assume Page Table is at 0x2000 and each PTE is of 4 bytes.

Memory accesses

Total

https://tinyurl.com/cs537-sp23-quiz10

0x0

0x0

0x1

0x9

0x7

0x8

0

…

0

PageTable

VPN:0

VPN:15

-1bt
-

-> - 4bitsVPN

0+ 2000

PPN
-

I

·n !
Fetch 0x3000

5
-

2+2 ↳ Translate 0x3000
↑1

6.

-
1

+

0x2000 +3x4
=200C- Ars

* 2+2
PAis 10x9000

64 bytes
↑ 2+2

Fetch 045320
+2 mem

accesses↑
↑

mem
accesses

2

>

18 total 8th men access =
0x7004

Valid VPN PPN

0 2 6

0 7 23

0 2 5

0 3 2

0 1 89

Memory accesses0x0

0x0

0x1

0x9

0x7

0x8

…

PageTableVPN:0

TLB

/

1

↑ 2
+2

--· -

C
1 +2 Total 12

1
&

②

1 +1
accesses

&

1 +1

=> TLB saved

6 memory

11 23 -9 · accesses

* 1 &5 88

& I 94 G 7

TLB: POLICIES

How to we replace entries in the TLB?

How do we handle context switches? -> whathappens
to TCB?

Performance OF TLB?

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

Miss rate of TLB: # TLB misses / # TLB lookups

TLB lookups? number of accesses to a =

TLB misses?
= number of unique pages accessed

Miss rate?

Hit rate?

Would hit rate get better or worse
with smaller pages?

3/10 =

0.5

Page size =4 kB
>

Int
=4 bytes 2048
= 1024into

1 page

=

2

-

2 pages

2/2048

I miss
rate

Workload acCESS PATTERNS

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}

Workload A Workload B

time

ad
dr

es
s

Sequential Accesses

time
ad

dr
es

s

Repeated Random Accesses

… …

Workload ACCESS PATTERNS

Spatial Locality Temporal Locality
-

o

·

o
· H
I

x
1 o

&

TLB Replacement policies

LRU: evict Least-Recently Used TLB slot when needed

A B C D E L M N O P

Fixed lize ILB

#iaminsertolderinstant a replace

that entry

LRU Troubles

Valid Virt Phys

0 ? ?
0 ? ?
0 ? ?
0 ? ?

virtual addresses:

0 1 2 3 4

Workload repeatedly accesses same offset (0x01) across 5 pages (strided access),
but only 4 TLB entries

What will TLB contents be over time?
How will TLB perform?

0x001

0 x10/ --

0 x201
size of LLB:4

0x30/

0y(0)

0x002
A N N y A 440

*1
0 x 102

& 2
0x202

13
:

TLB Replacement policies

LRU: evict Least-Recently Used TLB slot when needed

Random: Evict randomly chosen entry

Sometimes random is better than a “smart” policy!

Context Switches

What happens if a process uses cached TLB entries from another process?

1. Flush TLB on each switch
Costly à lose all recently cached translations

2. Track which entries are for which process
– Address Space Identifier
– Tag each TLB entry with an 8-bit ASID

->cafesolutionsale up enters

from previous process

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

Virtual Physical

PT

P2
28 KB

PTBR

load 0x1444
load 0x1444

P1 pagetable (ASID 11)1 5 4 …

P2 pagetable (ASID 12)6 2 3 …

Valid Virt Phys ASID

0 1 9 11
1 1 5 11
1 1 2 12
1 0 1 11

TLB:

TLB Example with ASID

ASID: 12

ASID: 11

- ->

↑

- -

P2
-
I 0- VPN =

1

P1
/ =

ASID:12

PPN =
2

Timestomp 0x2444

-7

TLB Performance

Context switches are expensive
Even with ASID, other processes “pollute” TLB

Architectures can have multiple TLBs
– 1 TLB for data, 1 TLB for instructions
– 1 TLB for regular pages, 1 TLB for “super pages”

stack heap
access

code sections

- ⑨

HW and OS Roles
If H/W handles TLB Miss

CPU must know where pagetables are

• CR3 register on x86
• Pagetable structure fixed and agreed upon between HW and OS
• HW “walks” the pagetable and fills TLB

If OS handles TLB Miss:

“Software-managed TLB”
• CPU traps into OS upon TLB miss.
• OS interprets pagetables as it chooses

• Modify TLB entries with privileged instruction

notinvolved.
10s is

HW knows layoutof
- table

page

->
-

invokes a
handler

costly
-> - for TLBmiss flexibility

->

TLB Summary

Pages are great, but accessing page tables for every memory access is slow
Cache recent page translations àTLB

– MMU performs TLB lookup on every memory access
TLB performance depends strongly on workload

– Sequential workloads perform well
– Workloads with temporal locality can perform well

In different systems, hardware or OS handles TLB misses
TLBs increase cost of context switches

– Flush TLB on every context switch
– Add ASID to every TLB entry

-> replacement policy

-.

QUIZ 11: MORE TLBs
https://tinyurl.com/cs537-sp23-quiz11

1. What problem(s) can be solved by using ASIDs ?

2. For a hardware-managed TLB miss, which of the following statements are true?

3. For a software-managed TLB miss, which of the following statements are true?

TLBS need to be flushed across context switches

HW knows where page tables

OS playsno role in TLB miss

-

HW raises exception on a TLB miss

OS moves entries in and out

Disadvantages of Paging

Additional memory reference to page table àVery inefficient
– Page table must be stored in memory
– MMU stores only base address of page table

Storage for page tables may be substantial
– Simple page table: Requires PTE for all pages in address space

Entry needed even if page not allocated ?

--

SMALLER PAGE TABLES

code
heap

stack

Virt Mem Phys Mem

Waste!

Why ARE Page Tables so Large?
Linear page

I page Tables:
<

number of
virtual

spages pages
xPTE lize

- Im
virtual

pages

A 4 bytes

- 4MBpage
table

4pages =

Many invalid PT entries

PFN valid prot

10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid
storing these?

a

Can we use

better data

structure?

Use more complex page tables, instead of just big array
Any data structure is possible with software-managed TLB

– Hardware looks for vpn in TLB on every memory access
– If TLB does not contain vpn, TLB miss

• Trap into OS and let OS find vpn->ppn translation
• OS notifies TLB of vpn->ppn for future accesses

AVOID SIMPLE LINEAR PAGE TABLES?

Other Approaches

1. Multi-level Pagetables
– Page the page tables
– Page the pagetables of page tables…

2. Inverted Pagetables

->
Hw friendly

-> software managed TLBs

Multilevel Page Tables
Goal: Allow page table to be allocated non-contiguously

Idea: Page the page tables
– Creates multiple levels of page tables; outer level “page directory”
– Only allocate page tables for pages in use
– Used in x86 architectures (hardware can walk known structure)

-

-> Pagetable ->mapping
page directory

only allocate

page
tables when pages

are
used

Multilevel Page Tables

outer page(4 bits) inner page (4 bits) page offset (12 bits)

20-bit address:

base of page directory

-

-

- - I

↑

-
·memory

pn-DPN mapping.
address of Pagetable- access

↓
empty.

saidi entries
table

No page
allocated

Address format for multilevel Paging

How should logical address be structured? How many bits for each paging level?
Goal?

– Each inner page table fits within a page
– PTE size * number PTE = page size

Assume PTE size = 4 bytes
Page size = 2^12 bytes = 4KB

à # bits for selecting inner page =

Remaining bits for outer page:
– 30 – ___ – ___ = ___ bits

outer page inner page page offset (12 bits)
30-bit address:

-

-- PTE =4 bytes

Page size:
44B

↑ table = 1024
Inner page entries

10

12 10 8

Multilevel Translation EXAMPLE
PPN
0x3
-
-
-
-
-
-
-
-
-
-
-
-
-
0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

Problem with 2 levels?
Problem: page directories (outer level) may not fit in a page

Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1
VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
(each page table fits in page) 4KB / 4 bytes à 1K entries per level

1 level:
2 levels:
3 levels:

outer page? inner page (10 bits) page offset (12 bits)
64-bit address:

On TLB miss: lookups with more levels more expensive
Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xbb 0x91 1
211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

FULL SYSTEM WITH TLBS

Inverted Page TAble
Only store entries for virtual pages w/ valid physical mappings

Naïve approach:
Search through data structure <ppn, vpn+asid> to find match

Too much time to search entire table

Better:
Find possible matches entries by hashing vpn+asid
Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

QUIZ 12

Consider a virtual address space of 16KB with 64-byte pages.
1. How many bits will we have in our virtual address for this address
space?

2.What is the total number of entries in the Linear Page Table for such an
address space?

3.Consider a two-level page table now with a page directory. How many
bits will be used to select the inner page assuming PTE size = 4 bytes?

https://tinyurl.com/cs537-sp23-quiz12

Quiz12
PPN
0x3
-
-
-
-
-
-
-
-
-
-
-
-
-
0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
-
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

translate 0xFEED0

Summary: Better PAGE TABLES

Problem: Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure
– Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
– Multi-level page tables used in x86 architecture
– Each page table fits within a page

.

NEXT STEPS

Project 3: In progress

Next class: Swapping!

