CS 744: SPARK STREAMING

Shivaram Venkataraman
Fall 2019
ADMINISTRIVIA

- Midterm grades this week
- Course Projects sign up for meetings
Scalable Storage Systems

Computational Engines

Resource Management

Datacenter Architecture

Applications

Machine Learning

SQL

Streaming

Graph

Applications

Machine Learning

SQL

Streaming

Graph

Computational Engines

Scalable Storage Systems

Resource Management

Datacenter Architecture
CONTINUOUS OPERATOR MODEL

Long-lived operators

Mutable State

Distributed Checkpoints for Fault Recovery

Stragglers?

Driver → Control Message

Task → Network Transfer

Flink

Naiad
CONTINUOUS OPERATORS
SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers
DISCRETIZED STREAMS (DSTREAMS)
```scala
def example()

val pageViews = readStream(http://..., "1s")

val ones = pageViews.map(
  event => (event.url, 1))

val counts =
  ones.runningReduce(
    (a, b) => a + b)
```

ARCHITECTURE

Spark Streaming

- live input data stream
- divide data stream into batches
- batches of input data as RDDs
- streaming computations expressed using DStreams
- generate RDD transformations

Spark
- Task Scheduler
- Memory Manager
- Spark batch jobs to execute RDD transformations

batches of results
DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful:
window("5s") → RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow("5s", (a, b) => a + b)
SLIDING WINDOW

Add previous 5 each time

(a) Associative only

(b) Associative & invertible
STATE MANAGEMENT

Tracking State: streams of (Key, Event) \(\rightarrow\) (Key, State)

```javascript
events.track(
  (key, ev) => 1,

  (key, st, ev) => ev == Exit ? null : 1,

  "30s")
```
SYSTEM IMPLEMENTATION

Master
- D-Stream lineage
- Input tracker

Worker
- Input receiver
- Task execution
- Block manager
- Comm. Manager

Worker
- Input receiver
- Task execution
- Block manager
- Comm. Manager

Client

replication of input & checkpointed RDDs

New
Modified
OPTIMIZATIONS

Timestep Pipelining
 No barrier across timesteps unless needed
 Tasks from the next timestep scheduled before current finishes

Checkpointing
 Async I/O, as RDDs are immutable
 Forget lineage after checkpoint
FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps
\[\text{pageViews} = \text{readStream}((\text{http://...}), \text{"1s"}) \] \\
\[\text{ones} = \text{pageViews.map}(\text{event} => (\text{event.url}, 1)) \] \\
\[\text{counts} = \text{ones.runningReduce}(\text{a, b} => \text{a} + \text{b}) \]
Straggler Mitigation

Use speculative execution

Task runs more than 1.4x longer than median task → straggler

Master Recovery

- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).
DISCUSSION

https://forms.gle/xUvzClbdV7H48mTM8
If the latency bound was made to 100ms, how do you think the above figure would change? What could be the reasons for it?
Consider the pros and cons of approaches in Naiad vs Spark Streaming. What application properties would you use to decide which system to choose?
NEXT STEPS

Next class: Graph processing
Sign up for project check-ins!
SHORTCOMINGS?

Expressiveness
- Current API requires users to “think” in micro-batches

Setting batch interval
- Manual tuning. Higher batch \rightarrow better throughput but worse latency

Memory usage
- LRU cache stores state RDDs in memory
COMPUTATION MODEL: MICRO-BATCHES

Micro-Batch:

- Driver
- Control Message
- Task
- Network Transfer
SUMMARY

Micro-batches: New approach to stream processing

Higher latency for fault tolerance, straggler mitigation

Unifying batch, streaming analytics