CS 744: SPARK STREAMING

Shivaram Venkataraman Fall 2019

ADMINISTRIVIA

- Midterm grades this week
- Course Projects sign up for meetings

CONTINUOUS OPERATOR MODEL

Long-lived operators

Mutable State

Distributed Checkpoints for Fault Recovery

Stragglers?

CONTINUOUS OPERATORS

SPARK STREAMING: GOALS

- I. Scalability to hundreds of nodes
- 2. Minimal cost beyond base processing (no replication)
- 3. Second-scale latency
- 4. Second-scale recovery from faults and stragglers

DISCRETIZED STREAMS (DSTREAMS)

EXAMPLE

```
pageViews =
                                        pageViews
                                                                           counts
                                                           ones
                                         DStream
                                                         DStream
                                                                          DStream
  readStream(http://...,
               "1s")
                               interval
                                [0, 1)
ones = pageViews.map(
   event =>(event.url, 1))
                                                                  reduce
                                                   map
counts =
                               interval
    ones.runningReduce(
                                [1, 2)
         (a, b) \Rightarrow a + b)
```

ARCHITECHTURE

DSTREAM API

Transformations

Stateless: map, reduce, groupBy, join

Stateful:

window("5s") \rightarrow RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow("5s", (a, b) => a + b)

SLIDING WINDOW

STATE MANAGEMENT

Tracking State: streams of (Key, Event) → (Key, State)

```
events.track(
   (key, ev) => 1,

   (key, st, ev) => ev == Exit ? null : 1,
   "30s")
```

SYSTEM IMPLEMENTATION

OPTIMIZATIONS

Timestep Pipelining

No barrier across timesteps unless needed

Tasks from the next timestep scheduled before current finishes

Checkpointing

Async I/O, as RDDs are immutable

Forget lineage after checkpoint

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure

- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy

- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

EXAMPLE

```
pageViews =
                                        pageViews
                                                                           counts
                                                           ones
                                         DStream
                                                                          DStream
                                                         DStream
  readStream(http://...,
               "1s")
                               interval
                                [0, 1)
ones = pageViews.map(
   event =>(event.url, 1))
                                                                  reduce
                                                   map
counts =
                               interval
    ones.runningReduce(
                                [1, 2)
         (a, b) \Rightarrow a + b)
```

FAULT TOLERANCE

Straggler Mitigation

Use speculative execution

Task runs more than 1.4x longer than median task → straggler

Master Recovery

- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).

DISCUSSION

https://forms.gle/xUvzCIbdV7H48mTM8

If the latency bound was made to 100ms, how do you think the above figure would change? What could be the reasons for it?	

Consider the pros and cons of approaches in Naiad vs Spark Streaming. What application properties would you use to decide which system to choose?

NEXT STEPS

Next class: Graph processing

Sign up for project check-ins!

SHORTCOMINGS?

Expressiveness

- Current API requires users to "think" in micro-batches

Setting batch interval

- Manual tuning. Higher batch → better throughput but worse latency Memory usage
 - LRU cache stores state RDDs in memory

COMPUTATION MODEL: MICRO-BATCHES

SUMMARY

Micro-batches: New approach to stream processing

Higher latency for fault tolerance, straggler mitigation

Unifying batch, streaming analytics