
CS 744: SPARK SQL

Shivaram Venkataraman
Fall 2019

ADMINISTRIVIA

- Assignment 2 grades this week
- Midterm details on Piazza
- Course Project Proposal comments

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

SQL: STRUCTURED QUERY LANGUAGE

DATABASE SYSTEMS

SQL in BiG DATA SYSTEMS

- Scale: How do we handle large datasets, clusters ?

- Wide-area: How do we handle queries across datacenters ?

SPARK SQL: Architecture

DATAFRAME

Motivation: Understanding the structure of data

lines = sc.textFile(“users")
csv = lines.map(x =>

x.split(‘,’))
young = csv.filter(x =>

x(1) < 21)
println(young.count())

PROCEDURAL VS. RELATIONAL

ctx = new HiveContext ()
users = ctx.table(“users")
young = users.where(

users(“age") < 21)
println(young.count())

lines = sc.textFile(“users")
csv = lines.map(x =>

x.split(‘,’))
young = csv.filter(x =>

x(1) < 21)
println(young.count())

OPERATORS à EXPRESSIONS

Projection (select), Filter, Join, Aggregations take in Expressions

employees.join(dept,
employees (“deptId") === dept ("id ")

)

Build up Abstract Syntax Tree (AST)

OTHER FEATURES

1. Debugging: Eager analysis of logical plans

2. Interoperability: Convert RDD to Dataframes

OTHER FEATURES

3. Caching: Columnar caching with compression

4. UDFs: Python or Scala functions
val model: LogisticRegressionModel = ...
ctx.udf. register (" predict", (x: Float , y: Float) =>
model.predict(Vector(x, y)))
ctx.sql (" SELECT predict(age , weight) FROM users ")

CATALYST
Goal: Extensibility to add new optimization rules

CATALYST DESIGN
Library for representing trees and
rules to manipulate them

tree. transform {
case Add(Literal(c1),Literal(c2)) =>

Literal(c1+c2)
case Add(left , Literal(0)) => left
case Add(Literal(0), right) => right

}

LOGICAL, PHYSICAL PLANS

1. Analyzer: Lookup relations, map named attributes, propagate types
2. Logical Optimization

3. Physical Planning

CODE GENERATION

CPU bound when data is in-memory
Branches, virtual function calls etc.

def compile(node: Node): AST = node match {
case Literal(value) => q"$value"
case Attribute (name) => q"row.get($name)"
case Add(left, right) =>

q"${compile(left)} + ${compile(right)}"
}

EXTENSIONS

Data sources
- Define a BaseRelation that contains schema
- TableScan returns RDD[Row]
- Pruning / Filtering optimizations

User-Defined Types (UDTs)
- Support advanced analytics with e.g. Vector
- Users provide mapping from UDT to Catalyst Row

SUMMARY, TAKEAWAYS

Relational API
- Enables rich space of optimizations
- Easy to use, integration with Scala, Python

Catalyst Optimizer
- Extensible, rule-based optimizer
- Code generation for high-performance

Evolution of Spark API

DISCUSSION
https://forms.gle/r6DnV7wLGHjYmYd17

Does SparkSQL help ML workloads? Consider the MNIST code in your
assignment. What parts of your code would benefit from SparkSQL and what
parts would not?

What are some limitations of the Catalyst optimizer as described in the
paper? Describe one or two ideas to improve the optimizer

NEXT STEPS

Next class: Wide-area SQL queries
Midterm coming up!

SCHEMA INFERENCE

Common data formats: JSON, CSV, semi-structured data

JSON schema inference
- Find most specific SparkSQL type that matches instances

e.g. if tweet.loc.latitude are all 32-bit then it is a INT
- Fall back to STRING if unknown
- Implemented using a reduce over trees of types

