CS 744: TPU

Shivaram Venkataraman Fall 2019

Review class - Thursday - LASP CLASS

Midterm 2, Dec 10th

- Papers from Dataflow Model to TPU
- Similar format, cheat sheet etc.

Poster session Dec 13th - 3/m + 5/m

- Template
- Printing instructions
- Reimbursement

Dec 17th - final reports

Muth Cool
læge man memory

> Weld

Serverless Computing

La Pywren

Compute Accelerators

Infiniband Networks

Non-Volatile Memory

nulti core Power/operation Performance/operation

Goal: Improve cost-performance by 10x over GPUs

DNN: RankBrain, LSTM: subset of GNM Translate CNNs: Inception, DeepMind AlphaGo

WORKLOAD: ML INFERNCE

Quantization → Lower precision, energy use

Quantization

32- hit or

16- hit float integer

8-bit integer multiplies (unlike training), 6X less energy and 6X less area

Need for predictable latency and not throughput e.g., 7ms at 99th percentile

TPU DESIGN CONTROL

Compatibility

"Instructions"

CPU -> TPU

PCIE

Easier deployment

INSTRUCTIONS

CISC format (why?) LD, ST, APD, MUZ 3. MatrixMultiply/Convolve Inst & lot of work Activate -> PCle 5. Write Host Memory -> Specialized next Inst

SYSTOLIC EXECUTION

Problem: Reading a large SRAM uses much more power than arithmetic!

COMPARISON WITH CPU, GPU

	Die									
Model	mm ²	nm	MHz	TDP	Measured		TOPS/s		GB/s	On-Chip
					Idle	Busy	8b	FP	GD/S	Memory
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W	1	2.8	160	8 MiB
TPU	<331*	28	700	75W	28W	40W	92		34	28 MiB

2x Worts 730x -

ENERGY PROPORTIONALITY

SELECTED LESSONS

- Latency more important than throughput for inference
- LSTMs and MLPs are more common than CNNs
- Performance counters are helpful
- Remember architecture history

SUMMARY

New workloads → new hardware requirements

Domain specific design (understand workloads!)

No features to improve the average case

No caches, branch prediction, out-of-order execution etc.

Simple design with MACs, Unified Buffer gives efficiency

Drawbacks

No sparse support, training support (TPU v2, v3)

Vendor specific?

DISCUSSION

https://forms.gle/zhH9eCbdjMnaRLRB8

Warger hatch rize - Increase 1. Max IPS

6 702	Туре	Batch	99th% Response	Inf/s (IPS)	% Max IPS	e Ciall
@ TPV Can have	CPU	16	7.2 ms	5,482	42%	Tout friendly
Can have	CPU (64)		21.3 ms	13,194	100%	,
lar ger hatch GP		16	6.7 ms γ	13,461	37%	
lar gor	GPU	64	8.3 ms	36,465	100% <	
(TPU	200	7.0 ms	225,000	80%	
	TPU	250	10.0 ms	280,000	100%	.
3 CPU incre	hatch ese	100%	JPS VS			

The is not energy proportion of Accuracy

Large memory

Letterogenality increases with TPUs

Same goal: Low Tail lateron

Same goal: Low Tail lateron How would TPUs impact serving frameworks like Clipper? Discuss what specific 4. You can send upto 200 examples