Welcome!

#### CS 744: DATAFLOW

Shivaram Venkataraman Fall 2020

### ADMINISTRIVIA

- Assignment 2 grades are up! -> Canvas
- Midterm grading in progress
- Course project proposal comments

L> Peer feedback Thursday this week L> Instructor feedback

- AEFIS feedback (next slide)

# **AEFIS FEEDBACK** Better organization Improve writing on the slides, speak slower Get a better internet connection? Better microphone? Ly Let me know how Phis sounds? More office hour slots Discussion groups: same group each time? Also add prof. input

More time for Midterm exam, more guidance on deliverables More homework/hands-on experience vs. too many evaluation components?



operators or DAG of operators 1 1 1 Spank Score PyTorch

#### DATAFLOW MODEL (?)

## MOTIVATION



## APPROACH

API Design -> Dataflow Model

Separate user-facing model from execution

Decompose queries into

- What is being computed
- Where in time is it computed
- When is it materialized  $\rightarrow$  Output
- How does it relate to earlier results



| Developers<br>applie             | writing                            |
|----------------------------------|------------------------------------|
| - API                            |                                    |
| Bat ch                           | (1) Framework                      |
| (1) Framework<br>processes       | Can process<br>data as it          |
| bounded<br>data<br>(2) Majkeduce | (2) Kinilar to very<br>small batch |

## TERMINOLOGY

Dashboard

Processing\_time







#### API



#### TRIGGERS AND INCREMENTAL PROCESSING

Windowing: where in event time data are grouped

Triggering: when in processing time groups are emitted

Counter, sum of all views for 2+3 > Output = 5 V1,2 V1,3 Strategies Discarding  $\leq$  6 Accumulating = 11Output : v1 6 Accumulating & Retracting = -5, 11 retracting Accumulating

#### **RUNNING EXAMPLE**

PCollection<KV<String, Integer>> input = I0.read(...);
PCollection<KV<String, Integer>> output =
 input.apply(Sum.integersPerKey());



#### **GLOBAL WINDOWS, ACCUMULATE**



### GLOBAL WINDOWS, COUNT, DISCARDING

PCollection<KV<String, Integer>> output = input

.apply(Window.trigger(Repeat(AtCount(2)))

.discarding())

.apply(Sum.integersPerKey());



### FIXED WINDOWS, MICRO BATCH



### SUMMARY/LESSONS

Design for unbounded data: Don't rely on completeness

Be flexible, diverse use cases

- Billing
- Recommendation
- Anomaly detection

Windowing, Trigger API to simplify programming on unbounded data

# DISCUSSION

https://forms.gle/jwHjTBbR49vyQASq6



Consider you are implementing a micro-batch streaming API on top of Apache Spark. What are some of the bottlenecks/challenges you might have in building such a system?

#### **NEXT STEPS**

Next class: Naiad

Course project proposal peer feedback