ttello!

CS 744: DATACENTER AS A COMPUTER

Shivaram Venkataraman Fall 2020

ANNOUNCEMENTS

Ly Thursday

- Assignments
 - Assignment zero is due! Piazza
 - Form groups for Assignment I on Piazza
- Class format
 - Review
 - Lecture
 - Discussion

OUTLINE

- Hardware Trends
- Datacenter design
- WSC workloads
- Discussion

WHY IS ONE MACHINE NOT ENOUGH?

- limited parallelism - cost could be high - Reducdancy - Machines could / - fail - Pata volumes ore high -> Slow 2009

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

WHAT'S IN A MACHINE?

Interconnected compute and storage

Newer Hardware

- GPUs, FPGAs
- RDMA, NVlink

SCALE UP: MAKE MORE POWERFUL MACHINES

Moore's law

- Stated 52 years ago by Intel founder Gordon Moore
- Number of transistors on microchip double every 2 years
- Today "closer to 2.5 years"
 Intel CEO Brian Krzanich

DENNARD SCALING IS THE PROBLEM

Suggested that power requirements are proportional to the area for transistors

- Both voltage and current being proportional to length
- Stated in 1974 by
 Robert H. Dennard
 (DRAM inventor)

Broken since 2005

"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

DENNARD SCALING IS THE PROBLEM

Performance per-core is stalled

Number of cores is increasing

"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

MEMORY TAKEAWAY

HDD CAPACITY

Horny.

Figure 4: Maximum sustained bandwidth trend

SSDS

Performance:

- Reads: 25us latency
- Write: 200us latency
- Erase: 1,5 ms

Steady state, when SSD full

- One erase every 64 or 128 reads (depending on page size)

Lifetime: 100,000-1 million writes per page

FIDD

rioms of latency deleting (data is experire overwriting

SSD VS HDD COST

Source: © Wikibon 2015. 4-Year Cost/TB Magnetic Disk & SSD, including Packaging, Power, Maintenance, Space, Data Reduction & Data Sharing

AMAZON EC2 (2019)

New – EC2 P3dn GPU Instances with 100 Gbps Networking & Local NVMe Storage

TRENDS SUMMARY

CPU speed per core is flat

Memory bandwidth growing slower than capacity

SSD, NVMe replacing HDDs

Ethernet bandwidth growing

binitations of Dingle machine?

STORAGE HIERARCHY (DC AS A COMPUTER V2)

WAREHOUSE-SCALE COMPUTERS

Single organization

Homogeneity (to some extent)

Cost efficiency at scale ~ ~ 10,000 h by

- Multiplexing across applications and services
- Rent it out!

Many concerns

- Infrastructure //
- Networking /
- Storage /
- Software
- Power/Energy
- Failure/Recovery

. . .

SOFTWARE IMPLICATIONS

Reliability failures

Storage Hierarchy

Workload Diversity

Single organization

WORKLOAD: PARTITION-AGGREGATE

WORKLOAD: SCHOLAR SIMILARITY

MACHINE LEARNING Long running intervive

Table 2.1: Six production applications plus ResNet benchmark. The fourth column is the total number of operations (not execution rate) that training takes to converge.

Type of Neural Network	Parameters (MiB)	Training			Inference
		Examples to Convergence	ExaOps to Conv	Ops per Example	Ops per Example
MLP0	225	1 trillion	353	353 Mops	118 Mops
MLP1	40	650 billion	86	133 Mops	44 Mops
LSTM0	498	1.4 billion	42	29 Gops	9.8 Gops
LSTM1	800	656 million	82	126 Gops	42 Gops
CNN0	87	1.64 billion	70	44 Gops	15 Gops
CNN1	104	204 million	7	34 Gops	11 Gops
ResNet	98	114 million	<3	23 Gops	8 Gops

https://forms.gle/CrrrhCPYHerwXNEt5

Comminication ->

overbill

Scale Out

small dataset

Pay as - you go Auto Ing < Time to Scaling procure >

Scale-up vs Scale-out If your app doesn't have parallelism

Fault tolerance

Car go fur ther 10,000 %

Microsoft Word vs. online document editor like Google Docs

Word DOCA .7 Collebration/ Consistency is a challenge Access it from anywhere Yearly release Monthly patch Martine / herdware Competifility Orline patches/release day teak redundancy -> Permaent J gg. gg. uptime

NEXT STEPS

Next class: Storage Systems

Assignment I out Thursday. Submit groups before that!

Wait list