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ANNOUNCEMENTS

- Assignment 1 out later today
- Group submission form
- Anybody on the waitlist?

before 5pm or no
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OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?



HISTORY OF DISTRIBUTED FILE SYSTEMS
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CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)
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ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server
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WORKLOAD PATTERNS (1991) workload
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OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash 
tables (DHT)
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GFS: WHY ?

workloads
→ Files are large !

Access pattern : sequential write ( read

Appends fault tolerance
→ Components that

had frequent
failures

scalability
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GFS: WHY ?

Components with failures Files are huge !

Applications are different 

→
large

scale

-

motivation
-

↳ append
concurrent writers



GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. No random

High bandwidth more important than low latency
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GFS: DESIGN

- Single Master for 
metadata

- Chunkservers for 
storing data

- No POSIX API !       
- No Caches!
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CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata
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GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware
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RECORD APPENDS
Write Client specifies the offset
Record Append GFS chooses offset

Consistency
At-least once
Atomic

lavishing
model is

tricky

↳ Applicators&
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→ because there might be failures

→ entire record appears together



MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes 

no
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FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks
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DISCUSSION

https://forms.gle/iUJh1MeVkKVRkt2X7



GFS SOCIAL NETWORK
You are building a new social networking application. The operations you will 
need to perform are 

(a) add a new friend id for a given user 
(b) generate a histogram of number of friends per user.                                                                       

How will you do this using GFS as your storage system ? 

file per user
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GFS EVAL
List your takeaways from “Table 3: Performance metrics”
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GFS SCALE

The evaluation (Table 2) shows clusters with up to 180 TB of 
data. What part of the design would need to change if we instead 
had 180 PB of data?



WHAT HAPPENED NEXT



Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage & 
Data Intensive Scalable Computing Systems



GFS EVOLUTION
Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)



GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ?  If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta... 



GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly 
across disk

Manage both SSD and hard disks



Heterogeneous storage

F4: Facebook

Blob stores Key Value Stores



NEXT STEPS

- Assignment 1 out tonight!
- Next week: MapReduce, Spark


