
CS 744: GOOGLE FILE SYSTEM

Shivaram Venkataraman
Fall 2020

good
morning

!

ANNOUNCEMENTS

- Assignment 1 out later today
- Group submission form
- Anybody on the waitlist?

before 5pm or no

→ Scale :
Machine

me

\ Collaboration :

OUTLINE

1. Brief history
2. GFS
3. Discussion
4. What happened next?

HISTORY OF DISTRIBUTED FILE SYSTEMS

SUN NFS

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC
Local FS

→ CS 537

read [f.
"

Bo
,
4096)

Erno

/dev/sda1 on /
/dev/sdb1 on /backups

NFS on /home

/

backups home

bak1 bak2 bak3

etc bin

tyler

537

p1 p2

.bashrc

e.a
dim -

T

no::www.T.io !

CACHING

Client cache records time when data block was fetched (t1)
Before using data block, client does a STAT request to server

- get’s last modified timestamp for this file (t2) (not block…)
- compare to cache timestamp
- refetch data block if changed since timestamp (t2 > t1)

Local FS

Server

cache: B

Client 2

NFS
cache: A t1t2

www.i.am
""

with If.ca

read stale↳
c- a

0¥' i'a'name
lstinertank

=

ANDREW FILE SYSTEM

- Design for scale

- Whole-file caching

- Callbacks from server

- d 800

,
r

res Ser?firm
wrote file moffat
c-read

J
haha÷ .

WORKLOAD PATTERNS (1991) workload
of patterns

in

- oik -

was
regrettedway

as
t
"
" /

as
it

OceanSTORE/PAST

Wide area storage systems

Fully decentralized

Built on distributed hash
tables (DHT)

et
e late 90 's (earlyyour

pit

GFS: WHY ?

workloads
→ Files are large !

Access pattern : sequential write (read

Appends fault tolerance
→ Components that

had frequent
failures

scalability
↳

number
F

concurrent
writers

GFS: WHY ?

Components with failures Files are huge !

Applications are different

→
large

scale

-

motivation
-

↳ append
concurrent writers

GFS: WORKLOAD ASSUMPTIONS

“Modest” number of large files

Two kinds of reads: Large Streaming and small random

Writes: Many large, sequential writes. No random

High bandwidth more important than low latency

① log admin ③ weffwef.IT
pg analysis

j Indexing
-
-

if::
"

-

GFS: DESIGN

- Single Master for
metadata

- Chunkservers for
storing data

- No POSIX API !
- No Caches!

www.rotp.me coordinatorTMLYE.in" gftih
"

leader metadata

| →M£%t¥%* F ""
" "" "

-

&;÷. waist:#Em.
storing
often

CHUNK SIZE TRADE-OFFS

Client à Master

Client à Chunkserver

Metadata

⇒ retinas
→

smaller chunks →
more

larger chinks →

→
more hotspots /
more requests

to tame chunk
server

- Larger
chunks →

lees metadata

+ 64
MBlarger

→
fragmentation

?

Not
in
god

GFS: REPLICATION

- 3-way replication to handle faults
- Primary replica for each chunk
- Chain replication (consistency)

- Decouple data, control flow
- Dataflow: Pipelining, network-

aware

secondaryI

am] 'ie:D D
.com goes frm

" "innit,
secondary

secondary

Tv€o%Ym.

scribe

¥.IE?gdiqaIfsrgdiotr

RECORD APPENDS
Write Client specifies the offset
Record Append GFS chooses offset

Consistency
At-least once
Atomic

lavishing
model is

tricky

↳ Applicators&
↳
primary replica for the dunk rstat !

→ because there might be failures

→ entire record appears together

MASTER OPERATIONS

- No “directory” inode! Simplifies locking
- Replica placement considerations

- Implementing deletes

no
symbiotes

no
data structure

- that
tracks files in

-
not on same rack → failure a

directory

-

.

disk utilization value
operations (write)

A

- lazy garbage
collect'm yak

la

FAULT TOLERANCE

- Chunk replication with 3 replicas
- Master

- Replication of log, checkpoint
- Shadow master

- Data integrity using checksum blocks

⇒
J D

m" Iie..
It " '④

DISCUSSION

https://forms.gle/iUJh1MeVkKVRkt2X7

GFS SOCIAL NETWORK
You are building a new social networking application. The operations you will
need to perform are

(a) add a new friend id for a given user
(b) generate a histogram of number of friends per user.

How will you do this using GFS as your storage system ?

file per user

an
metadata

add a new friend

÷÷÷⇒÷:÷i÷÷f÷÷r÷÷÷.→ large winter of
small files

GFS EVAL
List your takeaways from “Table 3: Performance metrics”

per QR
'd

read rate >

⑦ write rete

woo
' O - good W÷our:c:* 0

.
→;÷÷:

ir generator
of '

GFS SCALE

The evaluation (Table 2) shows clusters with up to 180 TB of
data. What part of the design would need to change if we instead
had 180 PB of data?

WHAT HAPPENED NEXT

Keynote at PDSW-DISCS 2017: 2nd Joint International Workshop On Parallel Data Storage &
Data Intensive Scalable Computing Systems

GFS EVOLUTION
Motivation:

- GFS Master
One machine not large enough for large FS
Single bottleneck for metadata operations (data path offloaded)
Fault tolerant, but not HA

- Lack of predictable performance
No guarantees of latency
(GFS problems: one slow chunkserver -> slow writes)

GFS EVOLUTION

GFS master replaced by Colossus
Metadata stored in BigTable

Recursive structure ? If Metadata is ~1/10000 the size of data
100 PB data → 10 TB metadata
10TB metadata → 1GB metametadata
1GB metametadata → 100KB meta...

GFS EVOLUTION

Need for Efficient Storage

Rebalance old, cold data

Distributes newly written data evenly
across disk

Manage both SSD and hard disks

Heterogeneous storage

F4: Facebook

Blob stores Key Value Stores

NEXT STEPS

- Assignment 1 out tonight!
- Next week: MapReduce, Spark

