
CS 744: Powergraph

Shivaram Venkataraman
Fall 2020

ADMINISTRIVIA

- Midterm update
- Course Project reminders

→ Tonight ! !

- Discussion groups
- Piazza Group

Number : email - id

- You can join
the corresponding group

- OH slot : start this from next week !

extra

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications
f-

Naiad , Spark streaming

- -
-

→

GRAPH DATA

Datasets Application

I . Social network
" friend graph

"

- >
recommendation

PageRank
2. Internet ! →

web pages , link

↳ Hosts are
connected

s . Fagots → e. out, pair.ir.am#y.mrtgg..ponltrgeg:i7nm
4 . Paper 't cites Papert cites others etc .

5 . Software dependencies
actor frame ..ru/Btonimt!. . .

Spark → Akka

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
PageRank
Shortest path
Connected components
…

↳
see L queries on

Tabular data

g

→

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):

return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
float total = msg.value();

vertex.val = 0.15 + 0.85*total;

foreach(nbr in out_neighbors):
SendMsg(nbr, vertex.val/num_out_nbrs);

-→ Vow of
11

Ef -7in:c: →

"

""vet:: a

\
-

-

State

q
-
-
-

of -

4 2 3 this
vertex
- -

=
e) het messages from Neighbors

& °

e) combiner coalesces messages]rh%eat, computation using the combined message convergence
(4) Send out msgs to Neighbors

NATURAL GRAPHS
a) Distribution of degree is skewed !

- most vertices have small degree
- some vertices have very high degree q

(2) High degree
vertices lead to skew in

↳ Communication

↳ memory premiere (state)

↳ computation
- a D

Hard to partition such graphs a

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Distributed execution (Sync, Async)

→ Execution

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges, vertices

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):

return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
rnew = 0.15 + 0.85 * acc
Du.delta = (rnew - Du.rank)/

#outNbrs(u)
Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

⑦ → Are
state

Az⑦ 0 AHAHA,

⑦As quieter fedt~veri.IE
-

-

-
-

-
→ -

-

- -

father returns an accumulator -

→ change in
value

- You can combine accumulators !

- similar to reduction in spark
-

-

Activate on a neighboring vertex from

scatter → Allows us to only

process necessary vertices in next

iteration

EXECUTION MODEL, CACHING

Active Queue

Delta caching
Cache accumulator value for vertex

Optionally scatter returns a delta
Accumulate deltas

Could run into

race conditions

↳ vertex Ftl Single machine .

Hath h

na::*.li#*.eaon-atel:oii
.

gather!÷7n÷e.• '

.

-

F
u,qedge -

state
P .

-

-
-

.

.

✓
'¥¥

.Huyser.fm/aaufaa.fau4aIy ¥⇒¥→ . apses ?! .ae)
Eat Eat .

scatter UD

→

→ mainframes need
"

u÷÷÷+.l÷÷atfuture operations
→

-

Syne .

rs .

A-sync

SYNC VS ASYNC

Sync Execution
Gather for all active vertices,
followed by Apply, Scatter

Barrier after each minor-step

Async Execution
Execute active vertices,
as cores become available

No Barriers! Optionally serializable

Queue of
V1

operations /
- Vz

'

vs
.

→

-

-
-

- -

Barrier

read her, GUD
neighbor ensures Vertenl

→ updates vertex state
GUD edge AUD

state .

Barrier state update huh)

update Acu) Acv?
local Alva is visible in

,

state Barrier next mirror GCVD
so?

: step

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Load graph into each machine

Communicate across machines to spread
updates, read state

state 1€
partition:E

GRAPH PARTITIONING
mirror

I 1 mirror
- O ' O

①

→ Every vertex is placed a

→ Every edge is placed on
machine a machine

→ Edges might span
across them

Vertices might be
across

machines
→ v. Natural graphs

→ lots of edges across
→ Better balance for

machines ! natural graphs

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

qmachiezt -

-

-

-

-

← machine I

② B

↳ stream through edges
send edge to a

random machine

↳ send edge 6- a machine that already has

one of its vertices

↳ greedy in parallel so you
don't have

perfect knowledge of
vertex → machine

OTHER FEATURES

Async Serializable engine
Preventing adjacent vertex from running simultaneously
Acquire locks for all adjacent vertices

Fault Tolerance
Checkpoint at the end of super-step for sync

-

→

[IIFhfFj. super step

SUMMARY

Gather-Apply-Scatter programming model
Vertex cuts to handle power-law graphs
Balance computation, minimize communication

DISCUSSION
https://forms.gle/rKB5hcJgT4NQsFgq8

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

→ Activate ensures no wasteful computation

→ fine - grained communication in Power - graph

↳ Better partitioning !

→ Delta caching → avoids computation

NEXT STEPS

Next class: GraphX

Partitioning in spark →
Co - partitioning

µ:.me?:::::E:::nYJsrr
.

iterations !

✓

Powergraph has methods to

fick what vertices go

in a partition

