CS 744: PYTORCH-BIGGRAPH

Shivaram Venkataraman Fall 2020

ADMINISTRIVIA

Course Project: Check in by Nov 20th

GRAPH EMBEDDINGS

TRAINING GRAPH EMBEDDINGS

Vertex	Embedding
12	<0.0, 0.25>
14	<0.33, 0.5>
16	<0.45, 0.6>

$$f(\theta_s, \theta_r, \theta_d) = sim\left(g_{(s)}(\theta_s, \theta_r), g_{(d)}(\theta_d, \theta_r)\right)$$

Source	Dest
12	14
12	18
16	14
	•••

NEGATIVE SAMPLING

Sample from edges not in the graph!

Two options I.According to data distribution

 $\mathcal{L} = \sum \sum \max(f(e) - f(e') + \lambda, 0))$ $e \in G e' \in S'_e$

2. Uniformly

SCALING CHALLENGES

Fast enough to embed graphs with $10^{11}-10^{12}$ edges in a reasonable time

~100 embedding parameters per node \rightarrow require 800GB of memory!

GRAPH PARTITIONING

Nodes (destination entity types) Edges Edges Edges (source entity types) (1,3) (1,4) (1,1)(1,2) Edges Edges Edges (2,1) (2,3)(2,4)(2,2)Edges Edges Edges (3,3)(3,4) (3,2) (3,1) Edges Edges Edges (4,4) (4,1)(4,2) (4,3)

Nodes

SYSTEM DESIGN

DISTRIBUTED EXECUTION

BATCH NEGATIVE SAMPLING

Each positive edge now has 3 corresponding negative edges

SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Partition graph into buckets for scalability Distributed execution with shared partition server Batched negative sampling

DISCUSSION https://forms.gle/YEtECXCUtksoL6Sr8

How does the partitioning scheme used in this paper differ from partitioning used in PowerGraph and why? (from review)

NEXT STEPS

Next class: New module!

Project check-ins by Nov 20th