
CS 744: RAY

Shivaram Venkataraman
Fall 2020

a.1
!

ADMINISTRIVIA

- Assignment Grades?
- Project proposal aka Introduction (10/16)

Introduction
Related Work
Timeline (with eval plan)

- Midterm: Oct 22

→ by
mall late

next
week

→ early next
week .

MACHINE LEARNING: STACK
→

ypytorch
= Data parallelism

train
→

,y→
Performance
Portability

TVM
D

\
Pipedream Pipeline

parallelism'm⇒

REINFORCEMENT LEARNING

Reward

Affeldt
wt
by .mm

algo
"

n;÷:i tea
"

RL SETUP:*

.in#ja:hna→ perforation -7

¥.

-
-
-

-

re
- do
ow - -

rein
at

Imitation .!qm:*

RL REQUIREMENTS

Simulation

Training

Serving

O
O¥.
static exeat

'm plan
→ fine grained computation → flexibility
-

↳ each simulation
could be ~ ms

or

hours

stateless processing

stated,dm!nFu7e, simeator state I ↳ data pre -proving

→ very
low latency
-

Inane execution

↳ future
computation

very High throughput) depends on outfit of

past compute
IM tasks I see

RAY API

Tasks Actors

futures = f.remote(args) actor = Class.remote(args)
futures = actor.method.remote(args)

objects = ray.get(futures)
ready = ray.wait(futures, k,timeout)

a'
←

Outboxqdfeadegr.am?t:aFIImtereqg-8osl9" @yeifzI÷mg↳ :

-

→ That 'kiEg¥eµ tasks Tfeu:EE:b

variable I
¥

T Im,I¥mItfauI Fwd
-

2mg
name

•
handle =

actor . method . remote Camp 't)
not 8.I →- I-

arap
will . handled

(or
war

beforeI futures can be arguments to tasks args1#
↳ you can spawn (or wait) for tasks

within

a task

RAY API

Tasks Actors

futures = f.remote(args) actor = Class.remote(args)
futures = actor.method.remote(args)

objects = ray.get(futures)
ready = ray.wait(futures, k,timeout)

•o

a•img÷-

Nested tasks
'

- \ """"

/

def f Largs) : -

for i in Ito lo :

fo . g. remote (
443) Hof . remote Ci)

o
-

- ray.
wait Cfo)
-

wait

EP '
"

Frigg. to rmthprtati"

COMPUTATION MODELLineage !
g.

create - policy .
remote

Dotted lines

↳ Control edges
spawn a

task C > -

an actor
-

spam @ get C)①
Sold lines ✓ ✓

↳ Data edges -

y

⇒ stateful edges / X
action on

arts

happen sequentially

ARCHITECTUREDeterministic
hash key, had =

make
can Mtn

state.gr tasks

I to 1

Fagin o •← idea::

¥
"anger
01¥

Emir:&.

Global control store

Object table

Task table

Function table

Sort of a Database Externalizes

↳ list r all objets state !
donations
)
Namde

metadata
and their ↳ shard

↳ Lineage of tasks Replicate\ Scale more

↳ code blocks corresponding easily , simplify
ached design 1

To tasks

fault tolerance

RAY SCHEDULER

Global Scheduler Global Control Store

Can local scheduler
take locality ?

§
.

remote
lags)

C
.

(if busy ,

wait for timeout

g.
* /✓bcdi5 & fund:Fasching

-
→ ¥
← length to
locality determine if

node is busy

FAULT TOLERANCE
Tasks

Actors

GCS

Scheduler

→ lineage , replay ok re - execution of tasks

periodically
→ checkpoint actors

tree restore cleft

replay messages

→ 775ha
'd I replication drain

→ stateless ! Nothing ?

Re- spawn
or launch a

new scheduler

SUMMARY

Ray: Unified system for ML training, serving, simulation
Flexible API with support for

Stateless tasks
Stateful Actors

Distributed scheduling, Global control store

DISCUSSION
https://forms.gle/PN5FSJB6vVkDjoih8

Consider you are implementing two apps: a deep learning model training and
a sorting application. When will use tasks vs actors and why ?

stateless ,
bad - balancing

state Actors Tasks
location

Sorting Does external Deterministic operations
unity → it still have

dependencies !
*

+
a. d' ride into smallerparts

?

Model weights are
can do dependencies

Training
state ,

Multiple for between iterators ?

data parallel fine - grained
recovery

✓
YET

replica

new
node

→

has betterif;÷÷£ :*:*.
-

to replica ?
n -

goes
doin

/ we# after

gift v) recovery ?

godwin? ageing Minkowski

NEXT STEPS

Next class: Clipper
Last lecture on ML!

Linear scalability

sillier ¢
a

super linear

l2hB/mc hardware
'

I:::÷;L
I

