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ADMINISTRIVIA

- Assignment Grades?
- Project proposal aka Introduction (10/16)
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RL REQUIREMENTS

Simulation

Training

Serving
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RAY API

Tasks Actors

futures = f.remote(args) actor = Class.remote(args)
futures = actor.method.remote(args)

objects = ray.get(futures)
ready = ray.wait(futures, k,timeout) 
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RAY API

Tasks Actors

futures = f.remote(args) actor = Class.remote(args)
futures = actor.method.remote(args)

objects = ray.get(futures)
ready = ray.wait(futures, k,timeout) 
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COMPUTATION MODELLineage !
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Global control store

Object table

Task table

Function table

Sort of a Database Externalizes

↳ list r all objets state !
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RAY SCHEDULER

Global Scheduler Global Control Store

Can local scheduler
take locality ?
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FAULT TOLERANCE
Tasks

Actors

GCS

Scheduler

→ lineage , replay ok re - execution of tasks
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SUMMARY

Ray: Unified system for ML training, serving, simulation
Flexible API with support for 

Stateless tasks
Stateful Actors

Distributed scheduling, Global control store



DISCUSSION
https://forms.gle/PN5FSJB6vVkDjoih8



Consider you are implementing two apps: a deep learning model training and 
a sorting application. When will use tasks vs actors and why ?

stateless ,
bad - balancing

state Actors Tasks
location

Sorting Does external Deterministic operations
unity → it still have

dependencies !
*

+
a. d' ride into smallerparts

?

Model weights are
can do dependencies

Training
state ,

Multiple for between iterators ?

data parallel fine - grained
recovery
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NEXT STEPS

Next class: Clipper
Last lecture on ML!

Linear scalability
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