
CS 744: SPARK STREAMING

Shivaram Venkataraman
Fall 2020

good
morning

ADMINISTRIVIA

- Midterm grades this week
- Course Projects feedback

→ ASAP

→ Hot CRP

ltlopefdly you
are working on this !

d) Assign grades for project proposals

(2) mid semester update →
Nov 20

"

CONTINUOUS OPERATOR MODEL
Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

① EH ④

framing average
count per window

At Bi

Ar rollback
all

←

A 's 132 operators
checkpoint

fu

d-
Avoid

-

stragglers
-

CONTINUOUS OPERATORS
Replication to provide fault tolerance

⇒ Multiple copies (say 2 ?) of each

Sz operatorX. →
d) Overhead of

2x
resources required

si e) Replicas need to be in sync

⇒ Sz
and Sd should be the

A
same

⇒ need to make sure replicas
are synchronized during

normal computation
t
overhead !

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

→
To handle high e-put streams

(- ←
→ enema: in ::ne÷: : outta

Running Average

- -

-
.

.
12 ,

l
,
4

,
5 I

→ test
it
,
← -

-
- - s t
,

ta - t. = latency

DISCRETIZED STREAMS (DSTREAMS)
- every

micro batch Y
" batch duration -

- → qgfawadtwwfuah.am
run short , deterministic

tasks

to compute
incremental output

→ -0

every
hatch operation is stateless input

, =

J) / state

-

-
E-
X-

state is stored as immutable
→

dataset

- each part of
the ttate can be

recovered independently -

tbf non - deterministic is opposite

→ if you
re - run output might

can be Taskradom as : output 0 else output 1
made ← be difficultdeterministic

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

(google.com ,
5

a filesystem . or from
Itoh"-

coma
.

.

")
HTTP etc . -

-

hash
,
shuffle

↳ micro
batch duration Rj

i

-

-

- - t
RDD

=p .

-

-

.

Titmice f
↳ read one chunk from storage qgoogte.com ,

't

]

DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful:
window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow(“5s”, (a, b) => a + b)

→ similar to RDD API

sliding -

-
-
-

ideates
a sliding window and aggregates RDDS that

belong to it .

SLIDING WINDOW

Add
previous 5
each time

micro batch duration -

- is

window duration -

-
5s

Et ,
tt5)

f
>
overhead

0
-

.

.

-

-

i

-

optimization
-

'

.

A
' improve

reduce By -

I
① performance

window
-

O - = -

- -

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
(key, ev) => 1,

(key, st, ev) => ev == Exit ? null : 1,

"30s”)

Session which has

→ all events for a

user satisfying some

MID
-

← I → Initialize state
criteria [login → logout]

-

uptake : given prev. state
and a new event

÷÷ ::÷::*:*. ¥¥i÷¥.

SYSTEM IMPLEMENTATION
persist data safely
④ Disk locally

leimemoryremotel-iskyieadspan.int?fn- tf-

y

"

windowing

state ←
.

.

- T
-persist

(2 machi
- memory
- -

Inherit ←
- -

from
spark ← -

-

OPTIMIZATIONS

Timestep Pipelining
No barrier across timesteps unless needed
Tasks from the next timestep scheduled before current finishes

Checkpointing
Async I/O, as RDDs are immutable
Forget lineage after checkpoint

map

§ , l) O
.
. .

.
.

O

Clt) E schedule before
→ fuse together map operations Q prer finishes

-

-

can be done by storing to remote memory

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

→
these might be

- -

used for future
outputs

- - - -

÷: ÷÷÷.

""

÷
.

:÷÷.

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

in parallel .

j::÷
::*

"

.

D ÷

FAULT TOLERANCE

Straggler Mitigation
Use speculative execution
Task runs more than 1.4x longer than median task à straggler

Master Recovery
- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).

→ fall back

Driver

- →
Runs forever 1

MR Master → retry the job on failure

[
art master recovery is similar !

SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics

DISCUSSION
https://forms.gle/eiqbjJTU95bMQLtm9

slope
indicates

try ! o .×s×" ' / overhead ⇒ more
machines

^

[
higher throughput for larger

mini batch size

①
overhead per mini

-
batch

:|i ' ' o←
.

-

✓
-

C
rtof -

-
-

- /
p

no co - ordination
linear growth v for group !

with cluster size ✓

more f-put for grief !

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it?

too low latency →
low that

overheads in task scheduling

tracking Reps etc .

if we go to
1000 machines ⇒ overheads could be

1 large !

linear scaling might not last ?

Consider the pros and cons of approaches in Naiad vs Spark Streaming. What
application properties would you use to decide which system to choose?

Waid spank streaming

latency sensitive failures

stragglersiterative t streaming

workflows

NEXT STEPS

Next class: Graph processing!
Midterm grades ASAP!

Batching ? !

↳ continuous operator
1 event .

=
not optimal
-

↳ ÷:÷c÷÷:÷÷÷f ¥:e¥÷
.
-

very low latency
→ MPI - based

→ Ctt Actor model

↳ Erlang → Telephone
companies

