
CS 744: SPLIT ANNOTATIONS

Shivaram Venkataraman
Fall 2020

welcome
!

ADMINISTRIVIA

Course Project Checkins – due tomorrow!
In-class project presentations

Dec 8th and Dec 10th

Sign up sheet on Piazza

→ Hot CRP

→ 5 min slot a
4 min presentation

+
@ LA

slides upload
a min

NEW HARDWARE and data MODELS

↳
semesters

computing
cloud

computing
compose and maintain

j efficiency

SETTING
Multi-core machines
Multiple functions and libraries

// inputs are double arrays with `len` elems
vdLog1p(len, d1, d1);// d1 = log(d1)
vdAdd(len, d1, tmp, d1);// d1 = d1 + tmp
// d1 = d1 / vol_sqrt
vdDiv(len, d1, vol_sqrt, d1);

✓ Intel) options
MKL pricing

workload

-

.

-
scope

↳ optimizes
a) Data movement is

across all

expensive even within a operatorsd1
machine -

Cpu → TVM
④ Arrays I data

is larger de
.

↳ layers of
them cache ⇒ streaming PNN

reads & writes to DRAM -

spark-
↳ cake if
data fits in

memory

COMPILER-BASED APPROACHES

Replace every library call to emit
intermediate representation (IR)

Compile all the IR together

Lots of code change required!

→
- we want

→
- - to be

here!

Kvm)

Existing rich loop fusion

libraries Nunley , pipelining
←

Pandas - - - -

g-

GOALS

Provide data movement optimizations across libraries

Require minimal or no changes to existing libraries

Leverage existing hand-tuned code for speedups

→ not be very
intrusive

-

I I
matrix FFT

multiply

APPROACH

d1 = price * strike
d1 = np.log2(d1) + strike

split
(1) Build execution

.
nu earhex

graph

ti
.

- - →
14 pass cache sized splits

-
- - to every function

SPLIT ANNOTATIONS

@splittable(
size: SizeSplit(size), a: ArraySplit(size),
mut out: ArraySplit(size))

void vdLog1p(long size, double*a, double*out)

Split types: N⟨V0...Vn⟩ e.g,: ArraySplit⟨10, 2⟩ for 10 element array, 2 pieces
Split annotation:

Name and split type to each argument and return value

easier to provide
Given a library

than changing code .

↳ fewer data types
- than

a ex - • IT # operators
=
-

-

←

'T you can pipeline these
a :[size "]

Vd Scale (long size , int scalar, double * a) functions

- . .

.
-

y::::÷i÷:
'

output is split in the same fashion as expert
out")

IMPLEMENTING SPLIT API

@splittable(m:MatrixSplit(m, axis), axis:_)
-> ReduceSplit(axis)

vector sumReduceToVector(matrix m, int axis);

Arrays flitter> . If data shares same

→ split type ⇒ you can

safely pipeline
split (double * a

,
start intend Parameters)⇒

. If you
cannot pipeline

return at

merge prior
results

call next function

⑦→ log ,
multiply > Eg,[

eye operation implemented imide ReducesHit
→ dog , multiply,#D!m

class to combine partial outputs -

MOZART DESIGN

→ Capture this execution

I II - graph

→ lazily
evaluate this

graph ,

maximum opportunity
IT

to pipeline

PYTHON CLIENT LIBRARY

Writing Annotations: Function decorators
@sa((DataFrameSplit(), DataFrameSplit()), {}, DataFrameSplit())
def divide(series, value):

Capturing the graph
Wraps original Python function and registers in graph
Returns a Future object

Evaluation Points
Lazily evaluate by overriding __getattribute__

p Already exists

-]
Pandas library

1 If
somebody calls

- divide
"

,
can

be

→ (Ray , Pywren) intercepted by decorator
-

Graph is
constructed

internally
Future [Dataframe] : print (Io) → internally do the oral

and call . print on the result

MOZART RUNTIME

Take dataflow graph à execution plan
Series of stages each stage split, pipeline and merge

Choosing a batch size
Set number of elements per batch using L2 cache size

e.are . ..
. . .. It :S?'m:3:D'mw

split - pipeline - merge

compute number of elements that will fit in L2 cache .

SUMMARY

Applications compose data processing libraries
Data movement is bottleneck on multi-core machines

Key idea: Split and pipeline data across functions

Split Annotations to reduce programmer effort
Mozart: Client library and runtime for lazy evaluation

Iterative workload

↳ will add

stages to graph

↳ pipeline across

iterations ?

DISCUSSION
https://forms.gle/F2LJ21qFkBGWyypB7

How does the dataflow graph that is executed by Mozart compare to dataflow graphs
we have seen in other systems like Spark/PyTorch etc.

Similarities Differences
→ hazy execution

→ Fault tolerance is

not the objective
→ narrow dependencies

= pipelined by Mozart . → No checkpoint'ng
→ Functions are blackbones

→ merging us . shuffling ↳ can't pick
optimal join'

3.7¥, operator

→

increase

men
bandwidth "two?e'"comp . expensive ✓ Mhienednhfthreads

-

-
for add, mid

7
-

- e speedier exp

-

'

→
n Ix

I -

having more

threads can
compute intensive

leed E mem functions ⇒ not

how bottleneck much speed up

NEXT STEPS

Next class: TPU
Project check-ins on HotCRP!

