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SETTING
Multi-core machines
Multiple functions and libraries

// inputs are double arrays with `len` elems
vdLog1p(len, d1, d1);// d1 = log(d1)
vdAdd(len, d1, tmp, d1);// d1 = d1 + tmp
// d1 = d1 / vol_sqrt
vdDiv(len, d1, vol_sqrt, d1);
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COMPILER-BASED APPROACHES

Replace every library call to emit 
intermediate representation (IR)

Compile all the IR together

Lots of code change required!

→
- we want

→
- - to be

here!

Kvm )

Existing rich loop fusion

libraries Nunley , pipelining
←

Pandas - - - -

g-



GOALS

Provide data movement optimizations across libraries

Require minimal or no changes to existing libraries

Leverage existing hand-tuned code for speedups

→ not be very
intrusive
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APPROACH

d1 = price * strike
d1 = np.log2(d1) + strike
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SPLIT ANNOTATIONS

@splittable(
size: SizeSplit(size), a: ArraySplit(size),
mut out: ArraySplit(size))

void vdLog1p(long size, double*a, double*out)

Split types:  N⟨V0...Vn⟩ e.g,:  ArraySplit⟨10, 2⟩ for 10 element array, 2 pieces
Split annotation:

Name and split type to each argument and return value

easier to provide
Given a library
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IMPLEMENTING SPLIT API

@splittable(m:MatrixSplit(m, axis), axis:_)
-> ReduceSplit(axis)

vector sumReduceToVector(matrix m, int axis);
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MOZART DESIGN
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PYTHON CLIENT LIBRARY

Writing Annotations: Function decorators
@sa((DataFrameSplit(), DataFrameSplit()), {}, DataFrameSplit())
def divide(series, value):

Capturing the graph
Wraps original Python function and registers in graph
Returns a Future object

Evaluation Points
Lazily evaluate by overriding __getattribute__ 
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MOZART RUNTIME

Take dataflow graph à execution plan
Series of stages each stage split, pipeline and merge

Choosing a batch size
Set number of elements per batch using L2 cache size

e.are . ..
. . .. It :S?'m:3:D'mw

split - pipeline - merge

compute number of elements that will fit in L2 cache .



SUMMARY

Applications compose data processing libraries
Data movement is bottleneck on multi-core machines

Key idea: Split and pipeline data across functions

Split Annotations to reduce programmer effort
Mozart: Client library and runtime for lazy evaluation

Iterative workload

↳ will add

stages to graph

↳ pipeline across

iterations ?



DISCUSSION
https://forms.gle/F2LJ21qFkBGWyypB7



How does the dataflow graph that is executed by Mozart compare to dataflow graphs 
we have seen in other systems like Spark/PyTorch etc.

Similarities Differences
→ hazy execution

→ Fault tolerance is

not the objective
→ narrow dependencies

= pipelined by Mozart . → No checkpoint'ng
→ Functions are blackbones

→ merging us . shuffling ↳ can't pick
optimal join'
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NEXT STEPS

Next class: TPU
Project check-ins on HotCRP!


