CS 744: TVM

Shivaram Venkataraman
Fall 2020
- Course project titles
- Project proposal aka Introduction (10/16)
 Introduction
 Related Work
 Timeline (with eval plan)
- Midterm: Oct 22
MACHINE LEARNING: STACK
MOTIVATION: PERFORMANCE PORTABILITY
OPTIMIZATION COMPUTATION GRAPHS

Operator Fusion

Data layout

example attributes

channels=32, kernel_size=(3,3), padding=(1,1), use_bias=0

shape=(1,10)

softmax

dense

flattten

relu

cnv2d

w3

w2

data

w1
TENSOR EXPRESSION LANGUAGE

```
m, n, h = t.var('m'), t.var('n'), t.var('h')
A = t.placeholder((m, h), name='A')
B = t.placeholder((n, h), name='B')
k = t.reduce_axis((0, h), name='k')
C = t.compute((m, n), lambda y, x:
    t.sum(A[k, y] * B[k, x], axis=k))
```

Common Arithmetic, Math operations
Know the shape of the output and the data accessed
for thread_group (by, bx) in cross(64, 64):
 for thread_item (ty, tx) in cross(2, 2):
 local CL[8][8] = 0
 shared AS[2][8], BS[2][8]
 for k in range(1024):
 for i in range(4):
 AS[ty][i*4+tx] = A[k][by*64+ty*8+i*4+tx]
 for each i in 0..4:
 BS[ty][i*4+tx] = B[k][bx*64+ty*8+i*4+tx]
 memory_barrier_among_threads()

def gemm_intrin_lower(inputs, outputs):
 ww_ptr = inputs[0].access_ptr("r")
 xx_ptr = inputs[1].access_ptr("r")
 zz_ptr = outputs[0].access_ptr("w")
 compute = t.hardware_intrin("gemm8x8", ww_ptr, xx_ptr, zz_ptr)
 reset = t.hardware_intrin("fill_zero", zz_ptr)
 update = t.hardware_intrin("fuse_gemm8x8_add", ww_ptr, xx_ptr, zz_ptr)
 return compute, reset, update

gemm8x8 = t.decl_tensor_intrin(y.op, gemm_intrin_lower)
What is the goal?
Goal: Create a specialized operator for input shape and layout

Challenge:

Choose appropriate schedule optimizations
Tiling size, loop unrolling

Automate the optimizer!
ML-BASED COST MODEL

Machine Learning Model Design Choices
Speed: Faster than time it takes to evaluate a config
Quality: Use a rank objective to predict the relative order of runtime

Gradient tree boosting model
memory access count
reuse ratio of each memory buffer at each loop level
one-hot encoding of loop annotations
ML-BASED COST MODEL

Iteration
 Select a batch of candidates
 Collect data
 Use as training data to update the model

How to select candidates?
Parallel Simulated Annealing
 Start from a random config
 Walk to a nearby config →
 Successful if cost decreases Else Reject
DISTRIBUTED DEVICE POOL

Pool of devices to speed up profiling
RPC interface to run a trial on device
Share device pools for multiple graphs
TVM: Compiler for ML inference models
Support high performance for range of models, hardware devices

Key ideas
- Graph-level optimizations
- Tensor expression language: Code-gen, Latency hiding etc
- ML based Cost Model for automation
DISCUSSION

https://forms.gle/WiVgJ3abGXXgfBN99
Consider that you are building an optimizer for Spark programs instead of ML inference. What would be some configuration knobs that you could similarly tune? What might be different from the TVM optimizer?
What is your takeaway from the following figure?
Next class: Ray
Course project: Oct 16 (introductions)
Midterm: Oct 22