

CS 744: DATACENTER AS A COMPUTER

Shivaram Venkataraman Fall 2021

ANNOUNCEMENTS

- Assignments
 - Assignment zero is due!
 - Form groups for Assignment I on Piazza
- Class format
 - Review
 - Lecture
 - Discussion

OUTLINE

- Hardware Trends
- Datacenter design
- WSC workloads
- Discussion

WHY IS ONE MACHINE NOT ENOUGH?

More date - deepit fit in I machine

ML / video encoding La parallelien when you use 71 martine

Single point of failure Applications might need specific Lardware

Compute Berring capacity

WHAT'S IN A MACHINE?

Interconnected compute and storage

Newer Hardware

- GPUs, FPGAs
- RDMA, NVlink

SCALE UP: MAKE MORE POWERFUL MACHINES

Moore's law

- Stated by Intel founder
 Gordon Moore
- Number of transistors on microchip double every 2 years
- Today "closer to 2.5 years"
 Intel CEO Brian Krzanich

DENNARD SCALING IS THE PROBLEM

Suggested that power requirements are proportional to the area for transistors

- Both voltage and current being proportional to length
- Stated in 1974 by
 Robert H. Dennard
 (DRAM inventor)

Broken since 2005

"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

DENNARD SCALING IS THE PROBLEM

Performance per-core is stalled

Number of cores is increasing

"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

MEMORY TRENDS

MEMORY TAKEAWAY

HDD CAPACITY

BACKBLAZE

HDD BANDWIDTH

Figure 4: Maximum sustained bandwidth trend

Disk bandwidth is not growing

SSDS

Performance:

- Reads: 25us latency ~ Out
- Write: 200us latency
- Erase: 1,5 ms

Steady state, when SSD full

- One erase every 64 or 128 reads (depending on page size)

Lifetime: 100,000-1 million writes per page

SSD VS HDD COST

ETHERNET BANDWIDTH

Ethernet

Growing 33-40% per year !

TRENDS SUMMARY

CPU speed per core is flat

Memory bandwidth growing slower than capacity

SSD, NVMe replacing HDDs

Ethernet bandwidth growing

DATACENTER ARCHITECHTURE

STORAGE HIERARCHY (DC AS A COMPUTER V2)

WAREHOUSE-SCALE COMPUTERS

Single organization

Homogeneity (to some extent)

Cost efficiency at scale

- Multiplexing across applications and services
- Rent it out!

Many concerns

- Infrastructure
- Networking
- Storage
- Software

. . .

– Power/Energy

- Failure/Recovery

SOFTWARE IMPLICATIONS

Reliability

Storage Hierarchy

Workload Diversity

Single organization

WORKLOAD: PARTITION-AGGREGATE

WORKLOAD: SCHOLAR SIMILARITY

Reduce Stage

Kroin very borg word MACHINE LEARNING

A intervive each for each warryle

Table 2.1: Six production applications plus ResNet benchmark. The fourth column is the total number of operations (not execution rate) that training takes to converge.

Type of	Parameters (MiB)	Training			Inference
Neural		Examples to	ExaOps to	Ops	Ops
Network		Convergence	Conv	per Example	per Example
MLP0	225	1 trillion	353	353 Mops	118 Mops
MLP1	40	650 billion	86	133 Mops	44 Mops
LSTM0	498	1.4 billion	42	29 Gops	9.8 Gops
LSTM1	800	656 million	82	126 Gops	42 Gops
CNN0	87	1.64 billion	70	44 Gops	15 Gops
CNN1	104	204 million	7	34 Gops	11 Gops
ResNet	98	114 million	<3	23 Gops	8 Gops

DISCUSSION

https://forms.gle/nFrMPkSAWTjMcgUp6

Scale-up vs Scale-out

DISCUSSION

100 GB of memory

Scale-up vs Scale-out Scale up [1 big machine] - Workloads that are hard to parallehize - less retwork B/W - less communication overhead b) depends on the workload

Scale - Out [10x 10GB of memory] - handling very large Repaciby / large data - incremental deployments

- Fault tilerance E fail reliability Now down strogglers

DISCUSSION

1 - in - 100 > W1 returns slow response [7: of time

NEXT STEPS

Next class: Storage Systems

Assignment I out Thursday. Submit groups before that!