## CS 744: DATACENTER AS A COMPUTER

Shivaram Venkataraman

Fall 2021

#### **ANNOUNCEMENTS**

- Assignments
  - Assignment zero is due!
  - Form groups for Assignment I on Piazza
- Class format
  - Review
  - Lecture
  - Discussion



## OUTLINE

- Hardware Trends
- Datacenter design
- WSC workloads
- Discussion

## WHY IS ONE MACHINE NOT ENOUGH?



#### WHAT'S IN A MACHINE?

Interconnected compute and storage

Newer Hardware

- GPUs, FPGAs
- RDMA, NVlink



#### SCALE UP: MAKE MORE POWERFUL MACHINES

#### Moore's law

- Stated by Intel founderGordon Moore
- Number of transistors on microchip double every 2 years
- Today "closer to 2.5 years"
   Intel CEO Brian Krzanich



Economist.com

## DENNARD SCALING IS THE PROBLEM

Suggested that power requirements are proportional to the area for transistors

- Both voltage and current being proportional to length
- Stated in 1974 by Robert H. Dennard (DRAM inventor)

Broken since 2005



"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

#### DENNARD SCALING IS THE PROBLEM

Performance per-core is stalled

Number of cores is increasing



"Adapting to Thrive in a New Economy of Memory Abundance," Bresniker et al

## MEMORY TRENDS



#### MEMORY TAKEAWAY



## HDD CAPACITY

Hard Drive Cost Per GB by drive size

Average Cost per Drive Size

By Quarter: Q1 2009 - Q2 2017





#### HDD BANDWIDTH



Figure 4: Maximum sustained bandwidth trend

Disk bandwidth is not growing

## SSDS

#### Performance:

Reads: 25us latency

Write: 200us latency

- Erase: 1,5 ms

Steady state, when SSD full

One erase every 64 or 128 reads (depending on page size)

Lifetime: 100,000-1 million writes per page

## SSD VS HDD COST



#### ETHERNET BANDWIDTH

Growing 33-40% per year!



## **AMAZON EC2 (2019)**

New – EC2 P3dn GPU Instances with 100 Gbps Networking & Local NVMe Storage

#### TRENDS SUMMARY

CPU speed per core is flat
Memory bandwidth growing slower than capacity
SSD, NVMe replacing HDDs
Ethernet bandwidth growing

## DATACENTER ARCHITECHTURE



#### STORAGE HIERARCHY (DC AS A COMPUTER V2)



## WAREHOUSE-SCALE COMPUTERS

Single organization

Homogeneity (to some extent)

Cost efficiency at scale

- Multiplexing across applications and services
- Rent it out!

#### Many concerns

- Infrastructure
- Networking
- Storage
- Software
- Power/Energy
- Failure/Recovery
- **–** ...

## SOFTWARE IMPLICATIONS

Reliability Storage Hierarchy

Workload Diversity Single organization

## **WORKLOAD: PARTITION-AGGREGATE**



## **WORKLOAD: SCHOLAR SIMILARITY**



## VIDEO ENCODING



#### MACHINE LEARNING

Table 2.1: Six production applications plus ResNet benchmark. The fourth column is the total number of operations (not execution rate) that training takes to converge.

| Type of<br>Neural<br>Network | Parameters<br>(MiB) | Training                |                   |                    | Inference          |
|------------------------------|---------------------|-------------------------|-------------------|--------------------|--------------------|
|                              |                     | Examples to Convergence | ExaOps to<br>Conv | Ops<br>per Example | Ops<br>per Example |
| MLP0                         | 225                 | 1 trillion              | 353               | 353 Mops           | 118 Mops           |
| MLP1                         | 40                  | 650 billion             | 86                | 133 Mops           | 44 Mops            |
| LSTM0                        | 498                 | 1.4 billion             | 42                | 29 Gops            | 9.8 Gops           |
| LSTM1                        | 800                 | 656 million             | 82                | 126 Gops           | 42 Gops            |
| CNN0                         | 87                  | 1.64 billion            | 70                | 44 Gops            | 15 Gops            |
| CNN1                         | 104                 | 204 million             | 7                 | 34 Gops            | 11 Gops            |
| ResNet                       | 98                  | 114 million             | <3                | 23 Gops            | 8 Gops             |

## DISCUSSION



Scale-up vs Scale-out



# DISCUSSION

Scale-up vs Scale-out

# **DISCUSSION**



#### **NEXT STEPS**

Next class: Storage Systems

Assignment I out Thursday.

Submit groups before that!