
CS 744: GRAPHX

Shivaram Venkataraman
Fall 2021

Hi !

ADMINISTRIVIA

- Midterm grades today?
- Course Project: Check in by Nov 30th

→ Then office hours ? !

T
canvas =

1 page update of

what you
have done

what are
roadblocks / challenges

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

0- Powergraph

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Distributed execution
(Sync, Async)

What is different from dataflow system e.g., Spark?

What are some shortcomings?

→ specialized partitioning
↳ lower communication

→ API was more graph specific
→

easy
to express many algorithms

→ Fault tolerance

↳ checkpoint of
all vertices

THIS CLASS

GraphX
Can we efficiently map graph abstractions to dataflow engines?

Scalability! But at what COST?
When should we distribute graph processing?

MOTIVATION |
specialized approach
↳ write out b- files
in - between systems

Extract ,

Transform

→ Modularity → update parts of" pipeline
"

head
-

i

1 I I1 I visualiseInput itdjanc.my users Connected or

data list into components evaluate
< ,

-

^

us

SYSTEM OVERVIEW
Advantages?Unified approach

→ Hierarchical implementation

☐ ↳ simplifies

implementation
→ reuse !

9 fault tolerance etc .

mitigation/! Base abstractionszµµaeoT?Éwiy might
not beETF

Analysis suitable and need

retrofit

PROGRAMMING MODEL
Constructor

Triplets

Vertex

FF

→ - e-

S : source

D: dust

(SID ,
D. ID

,

E
,
S -

V
,
D -V)

select * from edges
Join vertex . ID

= edges - source

AND JOIN VERTE ✗ ID
= edges . Best

MR TRIPLETS
mrTriplets(f: (Triplet) => M, sum: (M, M) => M): Collection[(Id, M)]

Sum of
vertex

ID I fallincoming
- - - - -

-
-
Y

"""" "
*
→ """Md""

|
" "^^ ""

^" ""̂ "

Csi , E)
M

map applies f b- triplets
sum : sum

group By group on dest vertex Id and

Return : collection with messages calls sum on
M

aggregated at destination
- -

-
- vertex → map operation after mr triplet

← - Z -

A o k Apply part .
.

7

I

- 91

- a -
-

- -

PREGEL USING GRAPHX
def Pregel(g: Graph[V, E],

vprog: (Id, V, M) => V,
sendMsg: (Triplet) => M,
gather: (M, M) => M): = {

g.mapV((id, v) => (v, halt=false))

while (g.vertices.exists(v => !v.halt)) {
val msgs: Collection[(Id, M)] =

g.subgraph(ePred=(s,d,sP,eP,dP)=>!sP.halt)
.mrTriplets(sendMsg, gather)

g = g.leftJoinV(msgs).mapV(vprog)
}

return g.vertices
}

↳ Think like a
vertex

- -

joy" Activate" vertex
.

All vertices are active

→ super step

→ filter only active
vertices

.-

↳Ed ,
Verte

"

msg
:
Vertex ID → Message

IMPLEMENTING TRIPLETS VIEW
Join strategy

Send vertices to the edge site

Multicast join
Using routing table

Vertex power Hash .

Cut in graph parishioner
T T r> JI , map , group By for mirifdets

-

← Flett"*
"

→ More edges than vertices
,

parallelize
• 0

.☒
•

es•edy-Bitmask tracks

•

active vertices

e-

• •

→ Routing table minimizes vertex

state sent across the network

not active anymore

SCALABILITY VS. ABSOLUTE PERFORMANCE

GraphX
3x from 8 to 32 machines

PowerGraph
2.6x from 8 to 32

shower
but

"

better
"

• scalability

or

ad &

-

- -0
•

-
-

n -

• 1
.

14×7 14×7
-

COST: Configuration THAT OUT-PERFORMS SINGLE THREAD
J C#

, tingle threaded
program H
→ arrays 0 0

→
vertices

- -

=

DISCUSSION
https://forms.gle/u4TvMumnH7yBHd3b8

What are some reasons why GraphX or GraphLab or Naiad might be slower
than a single thread implementation of PageRank?

- Communication overhead between nodes

↳ single thread = no
communication

- hood balancing → one core / machine be slow and lead b-

overall slowdown
M

"

- Memory locality → all of
his data fits in memory

of one
machine (ntwllion

vertex

)É ← bytes
-

-

4GB

ordering

I hnaphx implemented in
Scala /Jvm / Python

> overheads

V1 . WE having C++ / C

How would you expect a single-thread QR implementation to perform?

-

0

-
What is being computed

- Scalar addition /multiplication
- low compute

- First nap stage is compute

intensive ⇒ distributing makes
more

sense

SUMMARY

GraphX: Combine graph processing with relational model

COST
- Configuration that outperforms single-thread
- Measure scalability AND absolute performance

- Computation model of scalable frameworks might be limited
- Hardware efficiency matters
- System/Language overheads

→ utilization

NEXT STEPS

Next class: Marius
Project check-ins by Nov 20th

30

•

OPTIMIZING MR TRIPLETS

Filtered Index Scanning
Store edges clustered on source vertex id
Filter triplets using user-defined predicate

Automatic Join Elimination
Some UDFs don’t access source or dest properties
Inspect JVM byte code to avoid joins

