
CS 744: MAPREDUCE

Shivaram Venkataraman
Fall 2021

ANNOUNCEMENTS

• Assignment 1 deliverables
– Code (comments, formatting)
– Report

• Partitioning analysis (graphs, tables, figures etc.)
• Persistence analysis (graphs, tables, figures etc.)
• Fault-tolerance analysis (graphs, tables, figures etc.)

• See Piazza for Tutorial

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

→
Process data

→ GFS

BACKGROUND: PTHREADS
void *myThreadFun(void *vargp)
{

sleep(1);
printf(“Hello World\n");
return NULL;

}

int main()
{

pthread_t thread_id_1, thread_id_2;
pthread_create(&thread_id_1, NULL, myThreadFun, NULL);
pthread_create(&thread_id_2, NULL, myThreadFun, NULL);
pthread_join(thread_id_1, NULL);
pthread_join(thread_id_2, NULL);
exit(0);

}

hocks
- function run

- ↳ "
bd

{
Aditi""

variables

- threads share memory

file descriptors

→ creating a new

= tread

BACKGROUND: MPI
int main(int argc, char** argv) {

MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Print off a hello world message
printf("Hello world from rank %d out of %d processors\n",

world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();

}

mpirun -n 4 -f host_file ./mpi_hello_world

machines to

y
land processes

☐

address space is not shared

- r.4-mm-mdna.ge?ii-
← index of

the

proof

Hello
,

world Hello
world

☐ 15 ☐ ☐
ranko rank't - -

-
-
.

MOTIVATION

Build Google Web Search
- Crawl documents, build inverted indexes etc.

Need for
- automatic parallelization
- network, disk optimization
- handling of machine failures

→ Automate how many
processes

and

where they
are

run

☐ ☐ ☐☒

OUTLINE

- Programming Model
- Execution Overview
- Fault Tolerance
- Optimizations

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

I
" s

=É=
-

group

Example: Word Count

def mapper(line):
for word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))

each line is

ix. * →

- -

(CS , 1) (courses , 1)

CS → key (CS , 3)

E. ! → values

"

Word Count Execution: PART 1

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

Input Map Shuffle & Sort Reduce Outputyeah
block

of
data

is

operated
on

inparallel!

(the ,
D (quick, 1)

Che , 1)0
Me , ?_?

ten

Word Count Execution: PART2

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

hash code
reduce (key ,

listed)
for each

key Y .

mum Reduces ☐
= location
where intermediate]
data is

sent

ASSUMPTIONS
1. Failures are the norm

2. Inputs need to be splitable

3. Developers can convert / express
computation as MapReduce

4 . Cluster resources are automatically managed

ASSUMPTIONS

1. Commodity networking, less bisection bandwidth
2. Failures are common
3. Local storage is cheap
4. Replicated FS
5. Input is splittable

Word Count Execution

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Automatically
split work

Schedule tasks
with locality

MR Master
Submit a Job

Preferably puts

y
when to tasks where

launch
f ohukserrer

f-
reducers data exists

launches .

-

-

- Tonight
-

"

treat none

C.
roofer
bits node. 0 → chunkserrors

Fault Recovery
If a task crashes:

– Retry on another node
– If the same task repeatedly fails, end the job

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Inputs are replicated
Tasks are deterministic

☒

÷j
"
"
"

replica

Fault Recovery

If a node crashes:
– Relaunch its current tasks on other nodes

What about task inputs ? File system replication

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

intermediate
outputs from finished tasks

the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever finishes first

the quick
brown fox

Map

the fox ate
the mouse

Map

how now
brown
cow

-
some

tasks make very

slow progress

(even for same
data)

flow
.

launch
backup

task

MORE DESIGN

Master failure

Locality

↳ Abort the MR Keaton

Only 1 master
,

how probability of failure

↳ Disk access from
chunk server Reducers

Reducers ?
-4

0

MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures

- Limited but general functional API
- Map, Reduce, Sort
- No other synchronization / communication

- Fault recovery, straggler mitigation through retries

DISCUSSION
https://forms.gle/prXWmR97A3xozHkH9

DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the
documents after removing the most commonly occurring words.
1. Compute most common words.
2. Remove them and build the index.
What are the main shortcomings of using MapReduce to do this?

MIT

One MapReduce job to compute most common
words

second MR job to build index

yean you
combine

these two things
in

G) More the most common
words

one MR ?

(e) Read the input data
multiple times

① (a) & (b) look very

similar . but

fg§£Ñ backup tasks do

speed up execution

✓ fetoi¥Tkn•
0

a ②
: Input rates

are

÷ awh higher
I
'

:&
L s

reducer :#

Jeff Dean, LADIS 2009

NEXT STEPS

• Next lecture: Spark
• Assignment 1: Use Piazza!

