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ANNOUNCEMENTS

• Assignment 1 deliverables
– Code (comments, formatting)
– Report

• Partitioning analysis (graphs, tables, figures etc.)
• Persistence analysis (graphs, tables, figures etc.)
• Fault-tolerance analysis (graphs, tables, figures etc.)

• See Piazza for Tutorial



Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

→
Process data

→ GFS



BACKGROUND: PTHREADS
void *myThreadFun(void *vargp) 
{ 

sleep(1); 
printf(“Hello World\n"); 
return NULL; 

}

int main() 
{ 

pthread_t thread_id_1, thread_id_2; 
pthread_create(&thread_id_1, NULL, myThreadFun, NULL); 
pthread_create(&thread_id_2, NULL, myThreadFun, NULL); 
pthread_join(thread_id_1, NULL); 
pthread_join(thread_id_2, NULL); 
exit(0); 

}
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BACKGROUND: MPI
int main(int argc, char** argv) {

MPI_Init(NULL, NULL);

// Get the number of processes
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

// Get the rank of the process
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

// Print off a hello world message
printf("Hello world from rank %d out of %d processors\n",

world_rank, world_size);

// Finalize the MPI environment.
MPI_Finalize();

}

mpirun -n 4 -f host_file ./mpi_hello_world
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MOTIVATION

Build Google Web Search
- Crawl documents, build inverted indexes etc.

Need for 
- automatic parallelization
- network, disk optimization
- handling of machine failures
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OUTLINE

- Programming Model
- Execution Overview
- Fault Tolerance
- Optimizations



PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)
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Example: Word Count

def mapper(line):
for word in line.split():

output(word, 1)

def reducer(key, values):
output(key, sum(values))
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Word Count Execution: PART 1

the quick
brown fox

the fox ate 
the mouse

how now
brown 
cow

Map

Map

Map

Reduce

Reduce

Input Map Shuffle & Sort Reduce Outputyeah
block

of
data

is

operated
on

inparallel!

(the ,
D (quick, 1)

Che , 1)0
Me , ?_?

ten



Word Count Execution: PART2
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ASSUMPTIONS
1. Failures are the norm

2. Inputs need to be splitable

3. Developers can convert / express
computation as MapReduce

4 . Cluster resources are automatically managed



ASSUMPTIONS

1. Commodity networking, less bisection bandwidth
2. Failures are common
3. Local storage is cheap
4. Replicated FS
5. Input is splittable



Word Count Execution
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Fault Recovery
If a task crashes:

– Retry on another node
– If the same task repeatedly fails, end the job
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Fault Recovery

If a node crashes:
– Relaunch its current tasks on other nodes

What about task inputs ? File system replication
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the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
– Launch second copy of task on another node
– Take the output of whichever finishes first

the quick
brown fox

Map

the fox ate 
the mouse

Map

how now
brown 
cow

-
some

tasks make very

slow progress

( even for same
data)

flow
.

launch
backup

task



MORE DESIGN

Master failure

Locality
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MAPREDUCE: SUMMARY

- Simplify programming on large clusters with frequent failures

- Limited but general functional API
- Map, Reduce, Sort
- No other synchronization / communication

- Fault recovery, straggler mitigation through retries



DISCUSSION
https://forms.gle/prXWmR97A3xozHkH9



DISCUSSION

Indexing pipeline where you start with HTML documents. You want to index the 
documents after removing the most commonly occurring words. 
1. Compute most common words.
2. Remove them and build the index. 
What are the main shortcomings of using MapReduce to do this?
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Jeff Dean, LADIS 2009



NEXT STEPS

• Next lecture: Spark
• Assignment 1: Use Piazza!


