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ADMINISTRIVIA

- Midterm grades today!
- Course Project: Check in by Nov 30th

→ Pick up paupers in my office hours

Yieis OH

↳ Monday
- DONT PANIC !

- on the class on Tuesday
- Atrip the discussion

- solution walk through
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EXAMPLE: LINK PREDICTION

Task: Predict potential connections in a social network
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BACKGROUND: GRAPH EMBEDDING MODELS

Score function
Capture structure of the graph given source, destination embedding

Loss function
Maximize score for edges in graph
Minimize for others (negative edges)

5

NEGATIVE SAMPLING

Sample from edges not in the graph!

Two options
1. According to data distribution

2. Uniformly

→ for a particular edge
-

↳ cosine similarity
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TRAINING ALGORITHM

SGD/AdaGrad optimizer

Sample positive, negative edges

Access source, dest embeddings for 
each edge in batch
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for i in range(num_batches)
B = getBatchEdges(i)
E = getEmbeddingParams(B)
G = computeGrad(E, B)
updateEmbeddingParams(G)
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CHALLENGE: LARGE GRAPHS

Large graphs à Large model sizes 

Example
3 Billion vertices, d = 400 
Model size = 3 billion * 400 * 4 = 4.8 TB!

Need to scale beyond GPU memory, CPU memory!
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CHALLENGE: DATA MOVEMENT

(a) Sample edges, embeddings from CPU 
memory (DGL-KE) 

(b) Partition embeddings so that one 
partition fits on GPU memory.  Load 
sequentially (Pytorch-BigGraph)

8

One epoch on the Freebase86m knowledge graph 

Data movement overheads à low GPU util

(
12% GPU utilization

batch gradients

☒E::÷÷¥
Cpu memory
-



MARIUS

I/O efficient system for learning graph embeddings

Marius Design
- Pipelined training
- Partition ordering
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PIPELINED TRAINING
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splits the algorithm
into 5 stages
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OUT of MEMORY training
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Key idea: Maintain a cache of partitions in 
CPU memory

Questions
Order of partition traversal? 
How to perform eviction?
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ELIMINTATION ORDERING
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Initialize cache with c partitions

Swap in partition that leads to 
highest number of unseen pairs

Achieved by fixing c-1 partitions 
and swap remaining in any order
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SUMMARY

Graph Embeddings: Learn embeddings from graph data for ML

Marius: Efficient single-machine training
Pipelining to use CPU, GPU 
Partition buffer, BETA ordering

→

-
minimize number of swaps



DISCUSSION
https://forms.gle/LtoT8nEmw3oLvXuo9



If you were going to repeat the COST analysis for knowledge graph embedding 
training, what would you expect to find and why? 

→ Distributed systems need 4*-8 apu, to match µiyle9P⇒
→Mar ~ 3 Gpus of DGL

→ communication coat if
we go

to many GPUs

u
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ka training
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more
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→ I/o the bigger bottleneck
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↳ date dependent



How does the partitioning scheme used in this paper differ from partitioning schemes 
used in PowerGraph and why?

Workload was focused on

→
vertex and its neighbors → PageRank job

→ edge drives the computation

↳ source ,
dot for this edge



NEXT STEPS

Next class: New module!
Project check-ins by Nov 30th


