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ADMINISTRIVIA

Course Project Proposals
- Due Oct 25!
- See Piazza for template

Midterm details
- Oct 28th: Includes papers from Datacenter as a Computer to Nexus
- Open book, open notes
- Held in class time 9.30-10.45am Central Time

→ Monday
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MACHINE LEARNING: INFERENCE
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EXAMPLE APPLICATION

Video analysis service
- Thousands of streams, thousands of tenants
- Each stream is processed by a DNN-based “query”
- Latency SLOs (10s to 100s of ms)
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GOAL: HIGH GPU Utilization

Placement

Batching

Scheduler to
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SCHEDULING BATCHED EXECUTION
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BATCH-AWARE SCHEDULING

Inputs: Request rate, SLO for each model, Profiles at batch size
Approach: Allocate “full” GPUs based on load.  Handle residuals

Greedy Approximation
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HANDLING COMPLEX QUERIES

Challenge: 

How do we set latency SLOs for
complex queries?

Étude → Simple
query

object →mgkae#
detecting it

Carr1 1Additional challenge
we don't know what
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SCHEDULING COMPLEX QUERIES

Query Analysis to determine latency SLO splits
Inputs: Models with request rate Ri latency SLO L
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ADAPTIVE BATCHING

Clipper: Adapt the batch size 
based on the oldest request

fixed cost per req .

t

✗ is low ,
P is high

then drop rate is high

☐M
→ +s =

oldest request

needs to be

processed in 5ms

lower my
batch me in order

µ power hatch sire , ttit is

to meet this SLO
"falling behind

" lower



BATCH-AWARE DISPATCH

Early-dropping scheme
1. Scans queue using sliding
window of batch size

2. Stop at the first request with 
that can execute entire window

if you drop this frame

contents
"" frame might have

- similar

Drop requests at the head

of the queue
which cannot meet Soo



OTHER FEATURES

Prefix Batching

GPU Multiplexing

Overlapping CPU and GPU computation

→ Transfer learning → Many
models have

same
"

prefix
"

layers
Do this by hashing ft differ in last layer

the models

↳ round robin fashion

→↳ Pre - processing & post - processing



NEXUS ARCHITECTURE
throughput

Adapting
" is related

✗pvtpayes# to video
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SUMMARY

• ML Inference goals: latency SLO, GPU utilization
• Nexus: Handle multiple tenants, multiple DNNs
• Schedule using squishy bin packing
• Breakdown SLO for complex queries, adaptive batching

p-
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Pytorch Distributed
DataParallel Training API
Overlap compute, communication

PipeDream
Generalize parallelism: Pipeline parallel 
Reduce network, maintain consistency

Ray
Reinforcement learning applications
Actors and tasks, Local and global scheduler 

Pollux
Scheduler ML training jobs in a cluster
Co-adaptive scheduling to set batch size, LR

Nexus
System for ML Inference
Meet latency SLOs while ensuring high utilization

-

,
scheduling



DISCUSSION
https://forms.gle/XQ4CfNzTTFsSrVv7A



Consider a scenario where you have a model that takes variable amount of 
time depending on the input. For example if a frame contains 100 cars it takes 
250ms to process but if the frame has 1 car then it finishes in 10ms. What 
could be one shortcoming in using Nexus to schedule this model? SLO --250ms

when data switches from 1 car to 250 Cars
-

"

Profile
"

→
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Next class: SQL


