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LIMITATIONS OF DATA PARALLEL
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.~ MODEL PARALLEL TRAINING
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“et ¢ =7 PIPELINE PARALLEL
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CHALLENGE 1: WORK PARTITIONING
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WORK PARITIONING
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CHALLENGE 2: WORK SCHEDULING |
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CHALLENGE 2: WORK SCHEDULING
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CHALLENGE 3: EFFECTIVE LEARNING
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CHALLENGE 3: EFFECTIVE LEARNING
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STALENESS, MEMORY OVERHEAD
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SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: |FIB

Weight management: Stashing, vertical sync



DISCUSSION

https://forms.gle/j2GCDyqCejBH8DaCA



List two takeaways from the following table J
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Model Name Model Size GPUs PipeDream Speedup over
(#Servers x Config DataParallel
#GPUs/Server) (Epoch Time)
Resnet-50 97MB 4x4 (1x)
2x8 6 | x
Teflt calion
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What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution
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NEXT STEPS

Next class: Ray

Assignment 2 is due soon!

Course project: Oct | | (Monday) Submit titles, groups



