
CS 744: PIPEDREAM

Shivaram Venkataraman
Fall 2021

Hello !

ADMINISTRIVIA

- Assignment 2 is due Wednesday AM!
- Course project groups due Oct 11, Monday!

- Project proposal aka Introduction (10/25)

-
Tuesday evening !

I
Rank 1 →

highest
pref

÷

Rank to
lowest

pref

LIMITATIONS OF DATA PARALLEL

“fraction of training time spent
in communication stalls”

① Overhead of Comm .

is

high with data parallelism
☐ I① Under utilization

17comp #t - = -
- - - i

Comm -1-4

③ Overhead / Scaling is different

for GNMT us .
Resnet

MODEL PARALLEL TRAININGactivations
first

mini
batch

f-
data bs.is -

⑥¥¥'"÷÷ 00
→ 0

examples
→

AFAR -10 0
→

I
First ✓ -I last 2

user lasers Y
↳•

takes 2 time
UTILIZATION

② Memory
overhead is lower

⑥ Comm . per worker is only related

to activation size

PIPELINE parallel

Advantages?

→ Instead of having
one mini batch in flight
you

can have four ! →
0

①t 00
08

① scheduling 0 0
0

③ Learning =

→ High
utilization after

startup

→ the Comm
. per worker

is proportional to activation size

CHALLENGE 1: WORK PARTITIONING

Goal: Balanced stages in the pipeline. Why?
Steady state throughput is the throughput of the slowest stage

Stages can be replicated!

Stage : Collection of layers at a given worker
☐ ☐ ☐

↳ bad utilization

if unbalanced
Dwi ligers are

mini batch ☐ fast
bs= 128 { We V3

O

O
O

WORK PARITIONING

Profiler: computation time for forward, backward
size of output activations, gradients (network transfer)
size of parameters (memory)

Dynamic programming algorithm
Intuition: Find optimal partitions within a server,

Then find best split across servers using that

hirer a model

- -

for each layer

- -

-

=
write ←☒¥¥229131s

loathes a 1.259131s

CHALLENGE 2: WORK SCHEDULING

Traditional data parallel
forward iter(i)
backward iter(i)
forward iter(i+1)
…

Pipeline parallel: Worker can
Forward pass to push to downstream
Backward pass to push to upstream

hyaneking
forward &

backward

pass for layer
1

I.
'

O' ☒

CHALLENGE 2: WORK SCHEDULING

Num active batches ~= num_workers / num_replicas_input

Schedule one-forward-one-backward (1F1B)
Round-robin for replicated stages à

same worker for fwd, backward

→
Worker 2 FIN (6)

BW Cf)
Fw (8)

-

Bw (67
- n

-
r r↳ mini batch

1- → wt _f0
2ns

WZ

3→
WI

:

:

CHALLENGE 3: EFFECTIVE LEARNING

Naïve pipelining
Different model versions forward and backward

5

WZ : food pass of
mini batch 5

↳ model version 2

:
backward pass for mini

batch
5

↳ model version 4

-
.

@

CHALLENGE 3: EFFECTIVE LEARNING

Weight stashing
Maintain multiple versions of the weights
One per active mini-batch

Use latest version for forward pass.

Retrieve for backward
No guarantees across stages!

WZ → Save M2 , M3 ,
M4 . -

"

| Fw pass of MBS
⇒ use me

BW pals of MBS
⇒ retrieve ma

-

-
it

D- '

0D.

STALENESS, Memory oVERHEAD

How to avoid staleness:
Vertical sync

Memory overhead
Similar to data parallel?

"

-

"
→

When you first process
mini batch

note model version
← pass

it along

W
, ,Mo→MB ,f- W

, ;mo→MB^- ,

i↳
Wi

,
no
→ MBI

.

> if you
have K

.

:

'

mini batches
in flight

"

-

•

wqrmo→MB ,
w4mo→M%

⇒ same as

kxb batchbize Dp
with

SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: 1F1B
Weight management: Stashing, vertical sync

DISCUSSION
https://forms.gle/j2GCDyqCejBH8DaCA

Model Name Model Size GPUs
(#Servers x

#GPUs/Server)

PipeDream
Config

Speedup over
DataParallel
(Epoch Time)

Resnet-50 97MB 4x4
2x8

16
16

1×
1x

VGG-16 528MB 4x4
2x8

15-1
15-1

5.28x
2.98x

GNMT-8 1.1GB 3x4
2x8

Straight
16

2.95x
1x

List two takeaways from the following table
^FÉaP?radel

0

replication
•

Diff hardware
top.vn

- dilfsfeednps .

ng
,

D- - - - ☐ ☐ ☐ ☐ ☐ 12

What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution

Syne between stages → can be pipelined

MR → if we dont have a dep .
on
all map tasks ,

can we start
reducers early

÷*→be output a) is input to ite- t)

city
) -

.
.
- .

Can we
run

two of these

at the same time

What are some other workload scenarios (e.g. things we discussed for MapReduce or
Spark) that could use similar ideas of pipelined parallelism? Develop such one example
and its execution

PageRank pipelining within iteration
increment

i*=☐ :-. :÷☐☐
map reduce By

key
v1

we

NEXT STEPS

Next class: Ray

Assignment 2 is due soon!
Course project: Oct 11 (Monday) Submit titles, groups

