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Hello !



ADMINISTRIVIA

- Assignment 2 is due Wednesday AM!
- Course project groups due Oct 11, Monday!

- Project proposal aka Introduction (10/25)

-
Tuesday evening !

I
Rank 1 →

highest
pref

÷

Rank to
lowest

pref



LIMITATIONS OF DATA PARALLEL

“fraction of training time spent 
in communication stalls”
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② Memory
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PIPELINE parallel

Advantages?

→ Instead of having
one mini batch in flight
you

can have four ! →
0
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CHALLENGE 1: WORK PARTITIONING

Goal: Balanced stages in the pipeline. Why?
Steady state throughput is the throughput of the slowest stage

Stages can be replicated!

Stage : Collection of layers at a given worker
☐ ☐ ☐

↳ bad utilization
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WORK PARITIONING

Profiler: computation time for forward, backward
size of output activations, gradients (network transfer)
size of parameters (memory)

Dynamic programming algorithm
Intuition: Find optimal partitions within a server,

Then find best split across servers using that

hirer a model
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CHALLENGE 2: WORK SCHEDULING

Traditional data parallel
forward iter(i)
backward iter(i)
forward iter(i+1)
…

Pipeline parallel: Worker can
Forward pass to push to downstream
Backward pass to push to upstream

hyaneking
forward &
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pass for layer
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CHALLENGE 2: WORK SCHEDULING

Num active batches ~= num_workers / num_replicas_input

Schedule one-forward-one-backward (1F1B)
Round-robin for replicated stages à

same worker for fwd, backward
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CHALLENGE 3: EFFECTIVE LEARNING

Naïve pipelining
Different model versions forward and backward
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CHALLENGE 3: EFFECTIVE LEARNING

Weight stashing
Maintain multiple versions of the weights
One per active mini-batch

Use latest version for forward pass. 

Retrieve for backward
No guarantees across stages!
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STALENESS, Memory oVERHEAD

How to avoid staleness:
Vertical sync

Memory overhead
Similar to data parallel?

"

-

"
→

When you first process
mini batch

note model version
← pass

it along

W
, ,Mo→MB ,f- W

, ;mo→MB^- ,

i↳
Wi

,
no
→ MBI

.

> if you
have K

.

:

'

mini batches
in flight

"

-

•

wqrmo→MB ,
w4mo→M%

⇒ same as

kxb batchbize Dp
with



SUMMARY

Pipeline parallelism: Combine inter-batch and intra-batch
Partitioning: Replication, dynamic programming
Scheduling: 1F1B
Weight management: Stashing, vertical sync



DISCUSSION
https://forms.gle/j2GCDyqCejBH8DaCA



Model Name Model Size GPUs 
(#Servers x 

#GPUs/Server)

PipeDream
Config

Speedup over 
DataParallel
(Epoch Time)

Resnet-50 97MB 4x4
2x8

16
16

1×
1x

VGG-16 528MB 4x4
2x8

15-1
15-1

5.28x
2.98x

GNMT-8 1.1GB 3x4
2x8

Straight
16

2.95x
1x
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What are some other workload scenarios (e.g. things we discussed for MapReduce or 
Spark) that could use similar ideas of pipelined parallelism? Develop such one example 
and its execution

Syne between stages → can be pipelined

MR → if we dont have a dep .
on
all map tasks ,

can we start
reducers early
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What are some other workload scenarios (e.g. things we discussed for MapReduce or 
Spark) that could use similar ideas of pipelined parallelism? Develop such one example 
and its execution

PageRank pipelining within iteration
increment
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NEXT STEPS

Next class: Ray

Assignment 2 is due soon!
Course project: Oct 11 (Monday) Submit titles, groups


