
CS 744: Powergraph

Shivaram Venkataraman
Fall 2021

Good morning !

ADMINISTRIVIA

- Midterm grading in progress
- Course Project

↳ checkpoint . update =
end of Nov

↳ office hours / setup meetings

Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications

☐

GRAPH DATA

Datasets Application

Twitter / Social network

-graph of follows / friends
→ FG Recommendation

"

You might know
"

JJRohit / ScottWeb graph
links between Hayes . PageRank

Mtb

locations
connected by streets

Directions / Traffic
onelysis

Facts about entities [
Wikipedia

→ knowledge

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples
PageRank
Shortest path
Connected components
… 7

Online graph serving

- how latency
traversals

- Graph updates

Analytics
- Batch job
- large graph

and

you
want to analyze

it

PREGEL: PROGRAMMING MODEL
Message combiner(Message m1, Message m2):

return Message(m1.value() + m2.value());

void PregelPageRank(Message msg):
float total = msg.value();

vertex.val = 0.15 + 0.85*total;

foreach(nbr in out_neighbors):
SendMsg(nbr, vertex.val/num_out_nbrs);

N 2008

"

Y\
- combined or=
- - Accumulated

message

Vu V3 -

-

-
=

"

think - like - a - vertex
"

→ Vertex Program that operates on
messages over

Edges

NATURAL GRAPHS
- star in the

"

in - degree
"

so very few users have

lots of followers

- Some vertices here lots of

messages
come

in

- Work Tubdance →

"

Compute
"

@
-

- Storage / Network →

-

stragglers / how utilization / Increased time for
1 iteration

POWERGRAPH

Programming Model:
Gather-Apply-Scatter

Better Graph Partitioning
with vertex cuts

Sync / Async execution

→
Vertex based programming model

GATHER-APPLY-SCATTER
Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges

// gather_nbrs: IN_NBRS
gather(Du, D(u,v), Dv):

return Dv.rank / #outNbrs(v)

sum(a, b): return a+b

apply(Du, acc):
rnew = 0.15 + 0.85 * acc
Du.delta = (rnew - Du.rank)/

#outNbrs(u)
Du.rank = rnew

// scatter_nbrs: OUT_NBRS
scatter(Du,D(u,v),Dv):

if(|Du.delta|> ε) Activate(v)
return delta

g.
stateofver staff

I - =

"Gather returns an accumulator

-
Sum aggregates

accumulations
E/degree

Apply - updates
vertex state

scatter - updates edge state
_@,

EXECUTION MODEL, CACHING

Active Queue

Delta caching
Cache accumulator value for vertex

Optionally scatter returns a delta
Accumulate deltas

1. Activate all vertices synchronous
exec

mode

not all active in every iteration aaena phase
/ → Run gather

+ sum

for all active

vertices
•

. .
.

- H " ☒÷:z. . .

.

.
. .

- -
-

-
- -

-
-

← depths
→ Run aptly flare

-

→
Prev
iteration - -

- -

-

-

-
- - -

-

-

-

µ.

→
will activate

vertices

for next iteration
↳ Saves a lot of

gather calls

SYNC VS ASYNC

Sync Execution
Gather for all active vertices,
followed by Apply, Scatter

Barrier after each minor-step

Async Execution
Execute active vertices,
as cores become available

No Barriers! Optionally serializable

-

- Update vertex & edge state
"

eagerly
"

Aca) → update v
, state

acve) c.
'Eads updated state

, gone algor, arms
accelerated

-
no guarantees on convergence

DISTRIBUTED EXECUTION

Symmetric system, no coordinator

Load graph into each machine

Communicate across machines to spread
updates, read state

- Similar to Naiad

④
Titi

. . .
I?_? . .

graph
Partition

AdieI
were

GRAPH PARTITIONINGghost ghofterbiusvertices

I I

÷
- place a vertex on a

machine
- place an edge on a

- Minimize number of edges machine

that cross machines
- Replicas of

vertex state

when edges
are

on

-

can lead to imbalance
diff machines

- one primary replica
!

RANDOM, GREEDY OBLIVIOUS

Three distributed approaches:
Random Placement

Coordinated Greedy Placement

Oblivious Greedy Placement

↳ stream through edges , pick a random
machine

-

↳ check which machine already has this
vertex

and place edge there

→
Only know local set of vertices .

Not global

OTHER FEATURES

Async Serializable engine
Preventing adjacent vertex from running simultaneously
Acquire locks for all adjacent vertices

Fault Tolerance
Checkpoint at the end of super-step for sync

SUMMARY

Gather-Apply-Scatter programming model
Vertex cuts to handle power-law graphs
Balance computation, minimize communication

DISCUSSION
https://forms.gle/Xs3ibsUCdjynBv7u8

Consider the PageRank implementation in Spark vs synchronous PageRank in
PowerGraph. What are some reasons why PowerGraph might be faster?

- Delta caching
→ Communication ,

computation might be lower

→ Join between edge list and PageRank

- Vertex Cult

→ Edge cuts in spark . Imbalance /
more

communication
d

Join step

-
fault tolerance

→ Partial recovery can be faster ?

ord has best iteration

Ewe

Comm keeps

☐ going up !

wins
are

not

big after
32

machines

NEXT STEPS

Next class: GraphX I cost

which sections of which papers

