Good morning!

CS 744: POWERGRAPH

Shivaram Venkataraman Fall 2021

ADMINISTRIVIA

- Midterm grading in progress
- Course Project

GRAPH DATA

GRAPH ANALYTICS

Perform computations on graph-structured data

Examples

. . .

PageRank Shortest path Connected components Online graph serving - Low latency traversale - Graph updates Analytics - Batch job - harge graph and - harge graph and you want to analyze it

PREGEL: PROGRAMMING MODEL ~ 2008

Message combiner(Message m1, Message m2): return Message(m1.value() + m2.value()); Combined or Accumulated message void PregelPageRank(Message msg): float total = msg.value(); vertex.val = 0.15 + 0.85*total;foreach(nbr in out_neighbors): SendMsg(nbr, vertex.val/num_out_nbrs);

NATURAL GRAPHS

- sper in the "in-degree" to very few users have lots of followers Number of Vertices - Some vertices have lots of $\alpha = 1.7$ messages come in - Work Imbalance - "Compute 10[°] 10° 10^{2} In Degree - Storage / Network -> (a) Twitter In-Degree stragglers / how utilization / Increased time for 1 iteration

POWERGRAPH

Programming Model:

Gather-Apply-Scatter

Vertex based programming model

Sync / Async execution

Better Graph Partitioning with vertex cuts

GATHER-APPLY-SCATTER

Gather: Accumulate info from nbrs

Apply: Accumulated value to vertex

Scatter: Update adjacent edges

Crether returns an accumulator - Sum aggregates accumulators Apply - updates vertex state Scatter - updates edge state // gather_nbrs: IN_NBRS gather(Du, D(u,v), Dv): return Dv.rank / #outNbrs(v)

sum(a, b): return a+b = Combiner

SYNC VS ASYNC

Sync Execution

Gather for all active vertices, followed by Apply, Scatter

Barrier after each minor-step

h(v) ACVI) -> update V, state G(V2) L'reads updated state

Async Execution

Execute active vertices,

as cores become available

No Barriers! Optionally serializable

Update vertex & edge state - Some algorithms accelerates - No guarantees on convergence

DISTRIBUTED EXECUTION

GRAPH PARTITIONING

(a) Edge-Cut
Place a vertex on a machine
Minimize number of edges
Hat cross machines
Ian lead to imbalance

(b) Vertex-Cut - Place an edge on a - feplicas of vertex state when edges are on - Ohe primary replica

RANDOM, GREEDY OBLIVIOUS

OTHER FEATURES

Async Serializable engine

Preventing adjacent vertex from running simultaneously Acquire locks for all adjacent vertices

Fault Tolerance

Checkpoint at the end of super-step for sync

SUMMARY

Gather-Apply-Scatter programming model Vertex cuts to handle power-law graphs Balance computation, minimize communication

DISCUSSION https://forms.gle/Xs3ibsUCdjynBv7u8

Consider the PageRank implementation in Spark vs synchronous PageRank in PowerGraph. What are some reasons why PowerGraph might be faster?

NEXT STEPS

Next class: GraphX / COST Which sections of which papers