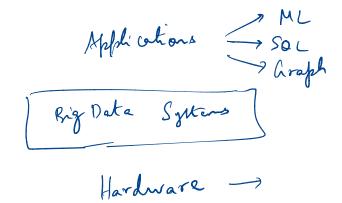
Good min'y

CS 744: PYWREN

Shivaram Venkataraman Fall 2021

ADMINISTRIVIA

Project checkins due Nov 30th - Piazza 1 page - What have you done to far - What are some blockers! - What are some blockers! Poster presentation Dec 14th


Project grade breakdown

Intro: 5%

Mid-semester checkin: 5%

Poster: 10%

Final Report: 10%

NEW DATA, HARDWARE MODELS

Serverless Computing

Compute Accelerators

Accelerators

Accelerators

Infiniband Networks

Non-Volatile Memory

File Systems etc.

SERVERLESS COMPUTING

not actually without servers

1 machine 1 TB memory MOTIVATION: USABILITY
8 machine 1/8 TB memory MOTIVATION: USABILITY

EC2Instances.info Easy Amazon EC2 Instance Comparison

similar for Azure,

What instance type?

What base image?

How many to spin up?

What price? Spot?

Price is variable be might be

Region: US East (N. Virginia) -	Cost: Hourly -	Reserved:	1 yr - No Upfront -	Columns -	Compare Selected Cle	ar Filters							
Filter: Min Memory (GB):	Compute Units:	S	torage (GB):										
Name	API Name	Memory	Compute Units (ECU)	vCPUs	Storage	Arch	Network Performance	EBS Optimized: Max Bandwidth	VPC Only	Linux On Demand cost	Linux Reserved cost	Windows On Demand cost	Windows Reserved co
Cluster Compute Eight Extra Large	cc2.8xlarge	60.5 GB	88 units	32 vCPUs	3360.0 GB (4 * 840.0 C	3B) 64-	it 10 Gigabit	N/A	No	\$2.000 hourly	\$1.090 hourly	\$2.570 hourly	\$1.336 hourly
Cluster GPU Quadruple Extra Large	cg1.4xlarge	22.5 GB	33.5 units	16 vCPUs	1680.0 GB (2 * 840.0 C	3B) 64-	it 10 Gigabit	N/A	No	\$2.100 hourly	unavailable	\$2.600 hourly	unavailable
T2 Nano	t2.nano	0.5 GB	Burstable	1 vCPUs	0 GB (EBS or	nly) 64-	it Low	N/A	Yes	\$0.006 hourly	\$0.005 hourly	\$0.009 hourly	\$0.007 hourly
T2 Micro	t2.micro	1.0 GB	Burstable	1 vCPUs	0 GB (EBS or	nly) 32/64-	lt Low to Moderate	N/A	Yes	\$0.013 hourly	\$0.009 hourly	\$0.018 hourly	\$0.014 hourly
r2 Small	t2.small	2.0 GB	Burstable	1 vCPUs	0 GB (EBS or	nly) 32/64-	it Low to Moderate	N/A	Yes	\$0.026 hourly	\$0.018 hourly	\$0.036 hourly	\$0.032 hourly
2 Medium	t2.medium	4.0 GB	Burstable	2 vCPUs	0 GB (EBS or	nly) 64-	it Low to Moderate	N/A	Yes	\$0.052 hourly	\$0.036 hourly	\$0.072 hourly	\$0.062 hourly
2 Large	t2.large	8.0 GB	Burstable	2 vCPUs	0 GB (EBS or	nly) 64-	it Low to Moderate	N/A	Yes	\$0.104 hourly	\$0.072 hourly	\$0.134 hourly	\$0.106 hourly
//4 Large	m4.large	8.0 GB	6.5 units	2 vCPUs	0 GB (EBS or	nly) 64-	it Moderate	450.0 Mbps	Yes	\$0.120 hourly	\$0.083 hourly	\$0.246 hourly	\$0.184 hourly
И4 Extra Large	m4.xlarge	16.0 GB	13 units	4 vCPUs	0 GB (EBS or	nly) 64-	it High	750.0 Mbps	Yes	\$0.239 hourly	\$0.164 hourly	\$0.491 hourly	\$0.366 hourly
//4 Double Extra Large	m4.2xlarge	32.0 GB	26 units	8 vCPUs	0 GB (EBS or	nly) 64-	it High	1000.0 Mbps	Yes	\$0.479 hourly	\$0.329 hourly	\$0.983 hourly	\$0.735 hourly
/14 Quadruple Extra Large	m4.4xlarge	64.0 GB	53.5 units	16 vCPUs	0 GB (EBS or	nly) 64-	it High	2000.0 Mbps	Yes	\$0.958 hourly	\$0.658 hourly	\$1.966 hourly	\$1.469 hourly
//4 Deca Extra Large	m4.10xlarge	160.0 GB	124.5 units	40 vCPUs	0 GB (EBS or	nly) 64-	it 10 Gigabit	4000.0 Mbps	Yes	\$2.394 hourly	\$1.645 hourly	\$4.914 hourly	\$3.672 hourly
14 16xlarge	m4.16xlarge	256.0 GB	188 units	64 vCPUs	0 GB (EBS or	nly) 64-	it 20 Gigabit	10000.0 Mbps	Yes	\$3.830 hourly	\$2.632 hourly	\$7.862 hourly	\$5.875 hourly
24 High-CPU Large	c4.large	3.75 GB	8 units	2 vCPUs	0 GB (EBS or	nly) 64-	it Moderate	500.0 Mbps	Yes	\$0.105 hourly	\$0.078 hourly	\$0.193 hourly	\$0.170 hourly
4 High-CPU Extra Large	c4.xlarge	7.5 GB	16 units	4 vCPUs	0 GB (EBS or	nly) 64-	it High	750.0 Mbps	Yes	\$0.209 hourly	\$0.155 hourly	\$0.386 hourly	\$0.339 hourly
4 High-CPU Double Extra Large	c4.2xlarge	15.0 GB	31 units	8 vCPUs	0 GB (EBS or	nly) 64-	it High	1000.0 Mbps	Yes	\$0.419 hourly	\$0.311 hourly	\$0.773 hourly	\$0.679 hourly
4 High-CPU Quadruple Extra Large	c4.4xlarge	30.0 GB	62 units	16 vCPUs	0 GB (EBS or	nly) 64-	it High	2000.0 Mbps	Yes	\$0.838 hourly	\$0.621 hourly	\$1.546 hourly	\$1.357 hourly
24 High-CPU Eight Extra Large	c4.8xlarge	60.0 GB	132 units	36 vCPUs	0 GB (EBS or	nly) 64-	nit 10 Gigabit	4000.0 Mbps	Yes	\$1.675 hourly	\$1.242 hourly	\$3.091 hourly	\$2.769 hourly
2 Extra Large	p2.xlarge	61.0 GB	12 units	4 vCPUs	0 GB (EBS or	nly) 64-	it High	750.0 Mbps	No	\$0.900 hourly	\$0.684 hourly	\$1.084 hourly	\$0.868 hourly
2 Eight Extra Large	p2.8xlarge	488.0 GB	94 units	32 vCPUs	0 GB (EBS or	nly) 64-	it 10 Gigabit	5000.0 Mbps	No	\$7.200 hourly	\$5.476 hourly	\$8.672 hourly	\$6.948 hourly
2 16xlarge	p2.16xlarge	732.0 GB	188 units	64 vCPUs	0 GB (EBS or	nly) 64-	it 20 Gigabit	10000.0 Mbps	No	\$14.400 hourly	\$10.951 hourly	\$17.344 hourly	\$13.895 hourly
32 Double Extra Large	g2.2xlarge	15.0 GB	26 units	8 vCPUs	60.0 GB S	SD 64-	it High	1000.0 Mbps	No	\$0.650 hourly	\$0.474 hourly	\$0.767 hourly	\$0.611 hourly
32 Eight Extra Large	g2.8xlarge	60.0 GB	104 units	32 vCPUs	240.0 GB (2 * 120.0 GB SS	SD) 64-	it 10 Gigabit	N/A	No	\$2.600 hourly	\$1.896 hourly	\$2.878 hourly	\$1.979 hourly
1 16xlarge	x1.16xlarge	976.0 GB	174.5 units	64 vCPUs	1920.0 GB S	SD 64-	it 10 Gigabit	5000.0 Mbps	No	\$6.669 hourly	\$4.579 hourly	\$9.613 hourly	\$7.523 hourly
1 32xlarge	x1.32xlarge	1952.0 GB	349 units	128 vCPUs	3840.0 GB (2 * 1920.0 GB SS	SD) 64-	nit 20 Gigabit	10000.0 Mbps	No	\$13.338 hourly	\$9.158 hourly	\$19.226 hourly	\$15.046 hourly
3 High-Memory Large	r3.large	15.25 GB	6.5 units	2 vCPUs	32.0 GB S	SD 64-	nit Moderate	N/A	No	\$0.166 hourly	\$0.105 hourly	\$0.291 hourly	\$0.238 hourly
13 High-Memory Extra Large	r3.xlarge	30.5 GB	13 units	4 vCPUs	80.0 GB S	SD 64-	it Moderate	500.0 Mbps	No	\$0.333 hourly	\$0.209 hourly	\$0.583 hourly	\$0.428 hourly
3 High-Memory Double Extra Large	r3.2xlarge	61.0 GB	26 units	8 vCPUs	160.0 GB S	SD 64-	elt High	1000.0 Mbps	No	\$0.665 hourly	\$0.418 hourly	\$1.045 hourly	\$0.824 hourly
3 High-Memory Quadruple Extra Lar	ge r3.4xlarge	122.0 GB	52 units	16 vCPUs	320.0 GB S	SD 64-	it High	2000.0 Mbps	No	\$1.330 hourly	\$0.836 hourly	\$1.944 hourly	\$1.490 hourly
3 High-Memory Eight Extra Large	r3.8xlarge	244.0 GB	104 units	32 vCPUs	640.0 GB (2 * 320.0 GB SS	SD) 64-	nit 10 Gigabit	N/A	No	\$2.660 hourly	\$1.672 hourly	\$3.500 hourly	\$1.989 hourly
2 Extra Large	i2.xlarge	30.5 GB	14 units	4 vCPUs	800.0 GB S	SD 64-	nit Moderate	500.0 Mbps	No	\$0.853 hourly	\$0.424 hourly	\$0.973 hourly	\$0.565 hourly
2 Double Extra Large	i2.2xlarge	61.0 GB	27 units	8 vCPUs	1600.0 GB (2 * 800.0 GB SS	SD) 64-	it High	1000.0 Mbps	No	\$1.705 hourly	\$0.848 hourly	\$1.946 hourly	\$1.131 hourly
2 Quadruple Extra Large	i2.4xlarge	122.0 GB	53 units	16 vCPUs	3200.0 GB (4 * 800.0 GB SS	SD) 64-	elt High	2000.0 Mbps	No	\$3.410 hourly	\$1,696 hourly	\$3.891 hourly	\$2,260 hourly
Eight Extra Large	i2.8xlarge		104 units	32 vCPUs	6400.0 GB (8 * 800.0 GB SS		nit 10 Gigabit	N/A	No	\$6.820 hourly	\$3.392 hourly	\$7.782 hourly	\$4.521 hourly
2 Extra Large	d2.xlarge		14 units	4 vCPUs	6000.0 GB (3 * 2000.0 C		it Moderate	750.0 Mbps	No	\$0.690 hourly	\$0.402 hourly	\$0.821 hourly	\$0.472 hourly
2 Double Extra Large	d2.2xlarge		28 units	8 vCPUs	12000.0 GB (6 * 2000.0 C		it High	1000.0 Mbps	No	\$1,380 hourly	\$0.804 hourly	\$1.601 hourly	\$0.885 hourly
2 Quadruple Extra Large	d2.4xlarge	122.0 GB		16 vCPUs	24000.0 GB (12 * 2000.0 G		it High	2000.0 Mbps	No	\$2.760 hourly	\$1.608 hourly	\$3.062 hourly	\$1.690 hourly
2 Eight Extra Large	d2.8xlarge		116 units	36 vCPUs	48000.0 GB (24 * 2000.0 G		it 10 Gigabit	4000.0 Mbps	No	\$5.520 hourly	\$3.216 hourly	\$6.198 hourly	\$3.300 hourly
II1. High I/O Quadruple Extra Large	hi1.4xlarge		35 units	16 vCPUs	2048.0 GB (2 * 1024.0 GB SS	,	nit 10 Gigabit	N/A	No	\$3.100 hourly	\$1.698 hourly	\$3.580 hourly	\$2.260 hourly
ligh Storage Eight Extra Large	hs1.8xlarge	117.0 GB		16 vCPUs	48000.0 GB (24 * 2000.0 G		oit 10 Gigabit	N/A	No	\$4.600 hourly	\$2.574 hourly	\$4.931 hourly	\$2.961 hourly
-g., o.o.ago tigin txua taige	no nonarge	117.0 GB	oo ama	.0 10108	.000.0 GD (4 2000.0 C	34.	argaun	1071		O O CO TRUITY	QLIOT T HOURY	4 noo i nouny	4E.OJI Houny

ABSTRACTION LEVEL?

users / der write application SOL query write application Page Rank Logistic Regression **Application** Spark / PyTorch /... Compute Framework Amazon EC2 -CloudLab -Hardware Private Cluster install spark / Rytord | etc. Lown.

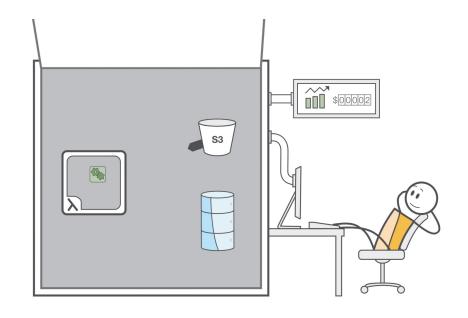
· I vision I challenge

- Snow flake
- large, small wire **Application** Compute Framework

STATELESS DATA PROCESSING

Split or break the Big Da - Compute layer -	ta Syrtems -> ephemeral / chiappear after	15 miss intermed result
> Storage layer	Key Value Store (Low Latency)	Container Container
Compute will be computed in 15 mins and to the computer of the	Function Scheduler Blob Store (High Bandwidth)	Container Container
pre emples reeds to server reds to handle this results		S3 used for inputs outputs

Fixed sized compute unit

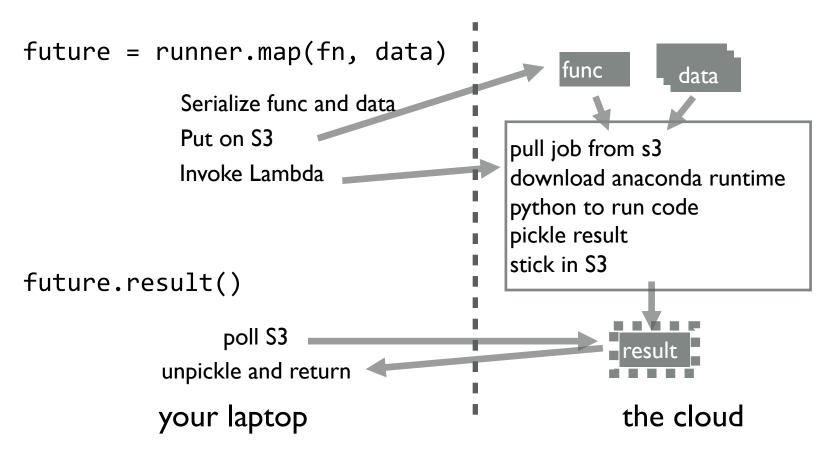

"SERVERLESS" COMPUTING

300-900 seconds single-core I time

512 MB in /tmp \ \ \mathcal{M}

3-I0GB RAM

Python, Java, node.js


PYWREN API

wrenexec = pywren.default_executor() which invokes the UPF on the given hit xlist = np.arange(10) futures = wrenexec.map(addone, xlist) print [f.result() for f in futures] The output is as expected: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Litt of libraries PYWREN: HOW IT WORKS | runner.map(fn, data) - Servalize function and - Trigger serverles functions [] -> fn (data[0]).
[] -> fn (data[1]) future.result() -> Poll the output bucket

to check if tasks complete ~ 1000s of lambda Ly overhead rutup the cloud your laptop

HOW IT WORKS

STATELESS FUNCTIONS: WHY NOW?

Container

What are the trade-offs?

_ S3 is faster than sigle SSD

goes to diff destinations Ly IOPS more

Net	work
Storage Medium	Write Speed (MB/s)
SSD on c3.8xlarge	208.73
SSD on i2.8xlarge	460.36

Co- lo	ration	9	5	50	r. <i>K</i>
with	comput.	e	M	not	Head

4 SSDs on i2.8xlarge

S3

important? -> Interesting / Saxpring trend

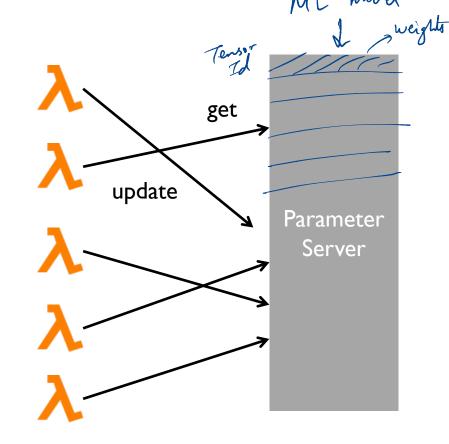
1768.04

501.13

MAP AND REDUCE?

Intermediate data small files

Ly ephemeral Inputs - 53/block Input Output Data Data ~ 1000 map functions & 1000 reduce IM files each napper produces output for each reducer intermediate.


PARAMETER SERVERS

Sparse ML models
L) gradient update would
only acceps subset of the
model

Use lambdas to run "workers"

Parameter server as a service ?

Doeset work tet well when you need to read the entire model

WHEN SHOULD WE USE SERVERLESS?

Yes!	Maybe not ?
overheads lower/Eare of development	- Pont get to choose hardware > which kind of CPU
- Foult follerance pre-baked into denign	- Balance compute, shuffle
> Idle time La port pay for idle time	> shuffle interive, overheads
-> More elastic ! -> More data and very little confute!	- Cannot decompose the work you reed to do

SUMMARY

Motivation: Usability of big data analytics

Approach: Language-integrated cloud computing

Features

- Breakdown computation into stateless functions
- Schedule on serverless containers
- Use external storage for state management

Open question on scheduling, overheads

DISCUSSION: MIDTERM 1

NEXT UP

Happy Thanksgiving!

Post-Thanksgiving:

- Mid-semester project check-in, Nov 30th
- SplitFS, TPU papers
- Midterm 2, Dec 7th