
CS 744: SPARK STREAMING

Shivaram Venkataraman
Fall 2021

Hi

ADMINISTRIVIA

- Midterm grades this week
- Course Projects feedback

→ Friday

→ TODAY

- Google Cloud Credits

↳ $50 / student email address

Private Piazza / e- mail

CONTINUOUS OPERATOR MODEL
Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?

① maptoeYId.SI#1usuIdEtate-
+

Avoid
stroop
in good
engineering
-
-

CONTINUOUS OPERATORS
-Replicate every operator

b-

another machine

- Minimizes recovery
time

-

-2, fine resources

- Replicas remain in - sync

i. . :')
- replication protocol

notable which also adds

state overhead

SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2. Minimal cost beyond base processing (no replication)

3. Second-scale latency

4. Second-scale recovery from faults and stragglers

→ high throughput

→ resource

= time between input
efficiency

#
arriving to when it is part of the outfit

DISCRETIZED STREAMS (DSTREAMS)
" """& €" "" " Mh" % "" "

"""↳

☐^°"
"&

- Is as
micro - batch

t= Is b- 2s c-
all events

-
Run the batch operation on the Rg ,

-

☐ .

→

input events
,

and save output

(operator state) also as an RDD

, www.go
, yank , we

µ,

output from previous
and compute

deterministic
→ recompute it , lineage

will this be the

same

☒⇒i☒
t.ms# ☒☐
÷
Processing Eme stamps / not

event timestamps

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

1) Stream

-

f-
read a stream

t and not a file

-

-

0
-

running /

running sum of gum
url events seen so far

DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful:
window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow(“5s”, (a, b) => a + b)

→ Verry
similar to RDD

API

sliding → -

- - -

↳ form a
window of 5s

and vedute using sum

SLIDING WINDOW

Add
previous 5
each time

computation
is

&"" "

=÷
"

-7
0

to this

for
5"

-

-

-

STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
(key, ev) => 1,

(key, st, ev) => ev == Exit ? null : 1,

"30s”)

-
-

=
User defined state

object for every key

-

I → Initiative state

I 1-
-

y
T old update my

state

line;Fµµ Nate Trent based on
event

+,
delete

that arrived

SYSTEM IMPLEMENTATION
grows

g.
stream

§pod
http server

or

read from FS/storage

agate
"
M
""

system

↳
-]

RDD in

Exist in memory

of 2

spark machines
←

OPTIMIZATIONS

Timestep Pipelining
No barrier across timesteps unless needed
Tasks from the next timestep scheduled before current finishes

Checkpointing
Async I/O, as RDDs are immutable
Forget lineage after checkpoint

to §¥⑧-☐

É+É/ t" :É£☐independent:p ,

oftretq.mestep

FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

state 1 state 2

☐ ☐

=
]
fault recovery

can run

fastNot:#compute state 1 tasks which were lost)

EXAMPLE
pageViews =
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

µ

can be run in

parallel

☒Fx x
.

☐

FAULT TOLERANCE

Straggler Mitigation
Use speculative execution
Task runs more than 1.4x longer than median task à straggler

Master Recovery
- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism).

→ Computation runs 24×7

[]

[
similar in spirit to hfs recovery

SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics

DISCUSSION
https://forms.gle/4Xbu9y9KTW5qph8H8

If the latency bound was made to 100ms, how do you think the above figure
would change? What could be the reasons for it?

Overhead
increases mwith

cluster

* :-.

Small micro batch

Every
#robatch

= fixed overhead + Time to do href / Word but ⇒ lots of pips

T | ↳ more metadata
~

2s ↳ tracking /
Bigger factor I scheduling taskslooms

Consider the pros and cons of approaches in Naiad vs Spark Streaming. What
application properties would you use to decide which system to choose?

Naiad / Flink Spark streaming
- low latency / quick processing

- fault recovery

theme

NEXT STEPS

Next class: Graph processing!
Midterm grades ASAP!

