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ADMINISTRIVIA

- Midterm grades this week
- Course Projects feedback

→ Friday

→ TODAY

- Google Cloud Credits

↳ $50 / student email address

Private Piazza / e- mail



CONTINUOUS OPERATOR MODEL
Long-lived operators

Distributed Checkpoints
for Fault Recovery

Naiad
Task

Control MessageDriver

Network Transfer

Mutable State

Stragglers ?
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CONTINUOUS OPERATORS
-Replicate every operator

b-

another machine

- Minimizes recovery
time

-

-2, fine resources

- Replicas remain in - sync
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- replication protocol

notable which also adds

state overhead



SPARK STREAMING: GOALS

1. Scalability to hundreds of nodes

2.    Minimal cost beyond base processing (no replication)

3.    Second-scale latency

4.    Second-scale recovery from faults and stragglers

→ high throughput

→ resource

= time between input
efficiency

#
arriving to when it is part of the outfit



DISCRETIZED STREAMS (DSTREAMS)
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EXAMPLE
pageViews = 
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)

1) Stream
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running /

running sum of gum
url events seen so far



DSTREAM API

Transformations
Stateless: map, reduce, groupBy, join

Stateful: 
window(“5s”) à RDDs with data in [0,5), [1,6), [2,7)

reduceByWindow(“5s”, (a, b) => a + b)

→ Verry
similar to RDD

API

sliding → -
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SLIDING WINDOW
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STATE MANAGEMENT

Tracking State: streams of (Key, Event) à (Key, State)

events.track(
(key, ev) => 1,

(key, st, ev) => ev == Exit ? null : 1,

"30s”)

-
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User defined state

object for every key
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SYSTEM IMPLEMENTATION
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OPTIMIZATIONS

Timestep Pipelining
No barrier across timesteps unless needed
Tasks from the next timestep scheduled before current finishes

Checkpointing
Async I/O, as RDDs are immutable 
Forget lineage after checkpoint
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FAULT TOLERANCE: PARALLEL RECOVERY

Worker failure
- Need to recompute state RDDs stored on worker
- Re-execute tasks running on the worker

Strategy
- Run all independent recovery tasks in parallel
- Parallelism from partitions in timestep and across timesteps

state 1 state 2
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fault recovery

can run

fastNot:#compute state 1 tasks which were lost )



EXAMPLE
pageViews = 
readStream(http://...,

"1s")

ones = pageViews.map(
event =>(event.url, 1))

counts =
ones.runningReduce(

(a, b) => a + b)
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FAULT TOLERANCE

Straggler Mitigation
Use speculative execution
Task runs more than 1.4x longer than median task à straggler

Master Recovery
- At each timestep, save graph of DStreams and Scala function objects
- Workers connect to a new master and report their RDD partitions
- Note: No problem if a given RDD is computed twice (determinism). 

→ Computation runs 24×7

[ ]

[
similar in spirit to hfs recovery



SUMMARY

Micro-batches: New approach to stream processing

Simplifies fault tolerance, straggler mitigation

Unifying batch, streaming analytics



DISCUSSION
https://forms.gle/4Xbu9y9KTW5qph8H8



If the latency bound was made to 100ms, how do you think the above figure 
would change? What could be the reasons for it?

Overhead
increases mwith

cluster

* :-.

Small micro batch

Every
#robatch

= fixed overhead + Time to do href / Word but ⇒ lots of pips

T | ↳ more metadata
~

2s ↳ tracking /
Bigger factor I scheduling taskslooms



Consider the pros and cons of approaches in Naiad vs Spark Streaming. What 
application properties would you use to decide which system to choose?

Naiad / Flink Spark streaming
- low latency / quick processing

- fault recovery

theme



NEXT STEPS

Next class: Graph processing!
Midterm grades ASAP!


