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ADMINISTRIVIA

- Course Project: Check in: Today!
- Midterm 2 next week!

→ Instructions on

Piazza

-

→ From SQL K TPU paper 1 page →
Canvas



Serverless Computing Compute Accelerators

Infiniband Networks

Non-Volatile Memory0



PERSISTENT MEMORY
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WHAT IS DIFFERENT?
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BACKGROUND: FILE SYSTEM API

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

rename(char *old, char *new)

fsync(int fd)

6

POSIX API for files
-

→ open a file ,

I
read a FD

=

→ more
a file to a

diff location

I flush any

state that has been buffered



Motivation: OVERHEADS
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DAX: mmap pages into virtual 
memory. 

No page caches!
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SPLIT-FS: GOALS

Low software overhead

Transparency

Minimal data-copy/IO

Flexible semantics
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→ compared b- Eme spent on
device

→ compatible with existing applications



SPLIT FS DESIGN: READ/WRITES
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fs is split into

§ part
in

userspace

and part in
kernelspace

n

→
don't pay system

call

overheads

•

→ Data operations
will

be in v split

Metadata operations
will be

in f- split



SPLIT FS DESIGN: READ/WRITES
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SPLIT FS DESIGN: APPEND
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Appends are forwarded
b- a staging file

⇒
fyne C) →

relinked

b- the original

file

\ mmap, also tracks

pre -
allocated

staging files
used

at
startup

and
when

replenishedneeded for appends



RELINK
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Avoid copying
data from staging

file to the original
fie
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SPLIT-FS MODES
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Metadata syncs call returns

↳ Directory hierarchy changes are visible

↳ sizes
,

Acc etc .

{
*"" ^^ "*

simultaneously

☐

I
append ( lo) , afford (G) tsynclfd) → tlo-wia.tt

Hand 4



SPLIT-FS: LOGGING

Logical redo logging
Log entry: 64B in size! 4B checksum!
sfence to ensure ordering

Fixed length log: 128 MB per-application

Replay entire log on recovery!
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Atomicity →

↳ overwrites
strict

" "

-
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" """ ""

↳ write down what operator
needs to be done in

-

the log

Redo I undo logging
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SUMMARY

Persistent Memory: New opportunities, new challenges

Split-FS: split Pipelining to use CPU, GPU 
Partition buffer, BETA ordering#

split -FS : Partition fs between User 1 Kernel
L

d
Data

metadata

" Allport for efficient appeals , atomic ops using

staging files



DISCUSSION
https://forms.gle/8TwGgqXhVyuiRCpx8
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In what ways can SplitFS improve performance of Big Data frameworks like MR/Spark?

→ Faster read / writes to irfmtl output files

⇒ Better performance

→ Appends being optimized is good for MR / spark

→ Persistence

↳ herpes fault tolerance

and reduce recomputation on failure

→ Capacity can also help. increase the Ribs
in

" cache
"



NEXT STEPS

Next class: TPU
Project check-ins tonight!



DISCUSSION

Staging files in DRAM?

Page faults are expensive on open()
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