
CS 744: SPLIT-FS

Shivaram Venkataraman
Fall 2021

ADMINISTRIVIA

- Course Project: Check in: Today!
- Midterm 2 next week!

→ Instructions on

Piazza

-

→ From SQL K TPU paper 1 page →
Canvas

Serverless Computing Compute Accelerators

Infiniband Networks

Non-Volatile Memory0

PERSISTENT MEMORY

4

Prior benchmarking

l'pmemtTape Drives
Mindy
y
,it

ircohe
SSD

¥0 - D-
- -

e
t

Intel Optare (
much

higher,w
PM

por
Pde

(Ssn)

WHAT IS DIFFERENT?

5

Traditional / Existing ymworrm.de
arvs -☒ fate

↳
"

"" |
-

SSDs

SATA/

HDD

Optare plums

are
on

memory
/ DRAM

OSTEP → Andrea / Renzi

shots

BACKGROUND: FILE SYSTEM API

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

rename(char *old, char *new)

fsync(int fd)

6

POSIX API for files
-

→ open a file ,

I
read a FD

=

→ more
a file to a

diff location

I flush any

state that has been buffered

Motivation: OVERHEADS

7

DAX: mmap pages into virtual
memory.

No page caches!

Total line
taken overhead ⇒

AIµLd
11µs

g.
= 9µs g.

8µs

-

#É-

These
overheads

are
ok for

slower

storage
devices

!

SPLIT-FS: GOALS

Low software overhead

Transparency

Minimal data-copy/IO

Flexible semantics

8

→ compared b- Eme spent on
device

→ compatible with existing applications

SPLIT FS DESIGN: READ/WRITES

9

fs is split into

§ part
in

userspace

and part in
kernelspace

n

→
don't pay system

call

overheads

•

→ Data operations
will

be in v split

Metadata operations
will be

in f- split

SPLIT FS DESIGN: READ/WRITES

9

already open

- mmaps relevant

region of
the file

0
-

- reads happen MY

LOAD
instructions

which go
to PM

-
write do a

virtual addr PM phyial gg.pe or
Mov initrmttm

process ☐ - ☐ add"
-
"

non
- temporal

"

store

SPLIT FS DESIGN: APPEND

10

Appends are forwarded
b- a staging file

⇒
fyne C) →

relinked

b- the original

file

\ mmap, also tracks

pre -
allocated

staging files
used

at
startup

and
when

replenishedneeded for appends

RELINK

11

Avoid copying
data from staging

file to the original
fie

0

man nwegoewih

SPLIT-FS MODES

12

Metadata syncs call returns

↳ Directory hierarchy changes are visible

↳ sizes
,

Acc etc .

{
"" ^^ "

simultaneously

☐

I
append (lo) , afford (G) tsynclfd) → tlo-wia.tt

Hand 4

SPLIT-FS: LOGGING

Logical redo logging
Log entry: 64B in size! 4B checksum!
sfence to ensure ordering

Fixed length log: 128 MB per-application

Replay entire log on recovery!

13

Atomicity →

↳ overwrites
strict

" "

-

"%¥[
"
" """ ""

↳ write down what operator
needs to be done in

-

the log

Redo I undo logging
↳ the operators

are

→Ñ# idempotent

1

by entries

SUMMARY

Persistent Memory: New opportunities, new challenges

Split-FS: split Pipelining to use CPU, GPU
Partition buffer, BETA ordering#

split -FS : Partition fs between User 1 Kernel
L

d
Data

metadata

" Allport for efficient appeals , atomic ops using

staging files

DISCUSSION
https://forms.gle/8TwGgqXhVyuiRCpx8

because of
pre

-

allocation

f-syne
is more

www.vk
is

expensive
in

expensive
in

ext 4 - BAX

sprites
→

mmab

entries
Nd
[

↳ split FS
↳ no copy

be

removed
.

relink

Data operations
are faster
Metadata operations are slower | Ok ! because

data operations are frequent

In what ways can SplitFS improve performance of Big Data frameworks like MR/Spark?

→ Faster read / writes to irfmtl output files

⇒ Better performance

→ Appends being optimized is good for MR / spark

→ Persistence

↳ herpes fault tolerance

and reduce recomputation on failure

→ Capacity can also help. increase the Ribs
in

" cache
"

NEXT STEPS

Next class: TPU
Project check-ins tonight!

DISCUSSION

Staging files in DRAM?

Page faults are expensive on open()

19

