Hello!

CS 744: TPU

Shivaram Venkataraman
Fall 2021
Midterm 2, Dec 7rd

- Papers from SCOPE to TPU
- Similar format etc.
- Details on Piazza

Poster session: Dec 14th

- More details soon
MOTIVATION

Capacity demands on datacenters
New workloads → voice search → lots of new queries
(Google Assistant)
Siri

Metrics
Power/operation
Performance/operation
Total cost of ownership → acquiring hardware

Custom ASICs for workloads

Goal: Improve cost-performance by 10x over GPUs
For every byte of data (model) → ML inference

<table>
<thead>
<tr>
<th>Name</th>
<th>LOC</th>
<th>Layers</th>
<th>Nonlinear function</th>
<th>Weights</th>
<th>TPU Ops / Weight Byte</th>
<th>TPU Batch Size</th>
<th>% of Deployed TPUs in July 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP0</td>
<td>100</td>
<td>5 FC, Conv</td>
<td>ReLU</td>
<td>20M</td>
<td>200</td>
<td>200</td>
<td>61%</td>
</tr>
<tr>
<td>MLP1</td>
<td>1000</td>
<td>4 FC</td>
<td>ReLU</td>
<td>5M</td>
<td>168</td>
<td>168</td>
<td>29%</td>
</tr>
<tr>
<td>LSTM0</td>
<td>1000</td>
<td>24 Conv, Vector</td>
<td>sigmoid, tanh</td>
<td>52M</td>
<td>64</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>LSTM1</td>
<td>1500</td>
<td>37 Conv</td>
<td>sigmoid, tanh</td>
<td>34M</td>
<td>96</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>CNN0</td>
<td>1000</td>
<td>16 Conv</td>
<td>ReLU</td>
<td>8M</td>
<td>2888</td>
<td>8</td>
<td>5%</td>
</tr>
<tr>
<td>CNN1</td>
<td>1000</td>
<td>4 Conv, 72 Pool</td>
<td>ReLU</td>
<td>100M</td>
<td>1750</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

DNN: RankBrain, LSTM: subset of GNM Translate
CNNs: Inception, DeepMind AlphaGo
Quantization \rightarrow Lower precision, energy use

8-bit integer multiplies (unlike training), 6X less energy and 6X less area

Need for predictable latency and not throughput

e.g., 7ms at 99th percentile

Particularly important for serving
- not just low avg latency
- but we want predictability!
TPU DESIGN
CONTROL

- Mounted on PCIe interface
- PCIe BW is low and this impacts latency/throughput
- Instructions need to be coarse grained to minimize host to device comm.
COMPUTE

- Biggest area occupied by Matrix Multiply Unit
 → Fully connected
 → Convolutions ...
 → Activation ReLU, tanh etc ...
 → Specialized compute Units

- Activation Rew, \text{tanh} etc ...

\[
\rightarrow \text{specialized compute Units}
\]
DATA \rightarrow model (data) \rightarrow output

1. Models are stored in DDR3.
2. Input examples go to unified buffer. Both are inputs to matrix multiply.

\Rightarrow DDR3 BW is lower than unified buffer BW.
INSTRUCTIONS

CISC format (why ?)

1. Read_Host_Memory ← input
2. Read_Weights ← model
3. MatrixMultiply/Convolve
4. Activate
5. Write_Host_Memory

Complex Instruction Set

PCIe, but not that high

Each instruction can take a long time!

maps very closely to the workload
SYSTOLIC EXECUTION

Problem: Reading a large SRAM uses much more power than arithmetic!

Typical implementation:
- Read from cache/register
- FPU to do MAC
- Write back to cache/register

Structured propagation of data between compute units

Predictable performance, while minimizing power
ROOFLINE MODEL

Capture the performance that is available given arithmetic intensity.

- Slope and a flat line
- Points along the line
- Slope = mem access bound
- Flat line = compute bound

Operational Intensity: MAC Ops/weight byte
HASWELL ROOFLINE

State of the art at next time

86 for TPUs

Operational Intensity: MAC Ops/weight byte
Comparison with CPU, GPU

<table>
<thead>
<tr>
<th>Model</th>
<th>mm^2</th>
<th>nm</th>
<th>MHz</th>
<th>TDP</th>
<th>Measured</th>
<th>TOPS/s</th>
<th>GB/s</th>
<th>On-Chip Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Idle</td>
<td>Busy</td>
<td>8b</td>
<td>FP</td>
</tr>
<tr>
<td>Haswell E5-2699 v3</td>
<td>662</td>
<td>22</td>
<td>2300</td>
<td>145W</td>
<td>41W</td>
<td>145W</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>NVIDIA K80</td>
<td>561</td>
<td>28</td>
<td>560</td>
<td>150W</td>
<td>25W</td>
<td>98W</td>
<td>--</td>
<td>2.8</td>
</tr>
<tr>
<td>TPU</td>
<td>$<331^*$</td>
<td>28</td>
<td>700</td>
<td>75W</td>
<td>28W</td>
<td>40W</td>
<td>92</td>
<td>--</td>
</tr>
</tbody>
</table>

- *Idle power is much lower*
- *Power / performance ratio*
SELECTED LESSONS

• Latency more important than throughput for inference

• LSTMs and MLPs are more common than CNNs

• Performance counters are helpful for benchmarking and debugging

• Remember architecture history
New workloads → new hardware requirements

Domain specific design (understand workloads!)
 No features to improve the average case
 No caches, branch prediction, out-of-order execution etc.
 Simple design with MACs, Unified Buffer gives efficiency

Drawbacks
 No sparse support, training support (TPU v2, v3)
 Vendor specific?
DISCUSSION

https://forms.gle/LFeaeME4pFdHZdMV6
For all hardware, increas batch size

Incr util & throughput but at cost of latency

GPU, CPU sacrifice utilization to reach 7ms SLO

<table>
<thead>
<tr>
<th>Type</th>
<th>Batch</th>
<th>99th% Response</th>
<th>Inf/s (IPS)</th>
<th>% Max IPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>16</td>
<td>7.2 ms</td>
<td>5,482</td>
<td>42%</td>
</tr>
<tr>
<td>CPU</td>
<td>64</td>
<td>21.3 ms</td>
<td>13,194</td>
<td>100%</td>
</tr>
<tr>
<td>GPU</td>
<td>16</td>
<td>6.7 ms</td>
<td>13,461</td>
<td>37%</td>
</tr>
<tr>
<td>GPU</td>
<td>64</td>
<td>8.3 ms</td>
<td>36,465</td>
<td>100%</td>
</tr>
<tr>
<td>TPU</td>
<td>200</td>
<td>7.0 ms</td>
<td>225,000</td>
<td>80%</td>
</tr>
<tr>
<td>TPU</td>
<td>250</td>
<td>10.0 ms</td>
<td>280,000</td>
<td>100%</td>
</tr>
</tbody>
</table>

Can handle much larger batch size

Able to meet 1 ms while 200K+ throughput
How would TPUs impact serving frameworks like Nexus? What specific effects it could have on distributed serving systems architecture.

- Goals
 - Nexus: high Acc util
 - TPU: pred. latency
 - have predictable latency for a range of input sizes
 - could make Nexus profiles more stable
 - Less chance for stragglers
Next week schedule

Tue: Midterm 2

Thu: Last class! (Fairness in ML, Summary)