
CS 744: TPU

Shivaram Venkataraman
Fall 2021

Hello !



Administrivia

Midterm 2, Dec 7rd

– Papers from SCOPE to TPU
– Similar format etc.
– Details on Piazza

Poster session: Dec 14th
– More details soon

-

→

→ questions more specified

writing your assumptions etc .



MOTIVATION

Capacity demands on datacenters 
New workloads 

Metrics
Power/operation
Performance/operation 
Total cost of ownership

Goal: Improve cost-performance by 10x over GPUs 

→ voice
searÑ→Ñ of new queries

( Google Assistant)
Siri Custom

☐ Asics for
workloads

→ acquiring hardware



WORKLOAD

DNN: RankBrain, LSTM: subset of GNM Translate 
CNNs: Inception, DeepMind AlphaGo 

for every byte of data (model ) →
ML inference

how many
arithmetic ops

C mixture of
models

with low%Trader of CNN'

☐
.

☐
☐

0 00 I↳
large



WORKLOAD: ML INFERNCE

Quantization à Lower precision, energy use 

8-bit integer multiplies (unlike training), 6X less energy and 6X less area 

Need for predictable latency and not throughput 
e.g., 7ms at 99th percentile 

→
model weights

could be

converted b- integers

-

Particularyat for serving

-
not just too org

latency

- but we want predictability !



TPU DESIGN
CONTROL

- Mounted on PCIe interface

- compatibility
- Pae BW is ☐
low and this

impacts latency / 1-put

- Instructions need b-

be coarse grained
b- minimize

Host to
Device Comm .



COMPUTE
- Biggest area occupied

by Matrix Multiply Unit

↳ Fully connected

↳ Convolutions .
-
-

→ Activation Rew
,

tanh etc . . . [→ specialized compute
Units



DATA → model fdIa) -
- output - model

g-
ok

?!⑨① Models are stored in -
.

DDR}

④ Input examples go
to

unified buffer ⑦
Both are inputs

6- matrix Multiply

Unified buffer = 24 MB

~ ↳ cache tire -

→ DDR 3 Bw is lower

than Unified buffer BW



INSTRUCTIONS

CISC format (why ?) 

1. Read_Host_Memory
2. Read_Weights
3. MatrixMultiply/Convolve 
4. Activate 
5. Write_Host_Memory

→ Complex
Instruction Set

↳ Pae bw not that high
← irtmt

↳ Each instruction can take a

← model
long time !

- -

→ maps very closely 6- the

workload



SYSTOLIC EXECUTION

Problem: Reading a large SRAM uses much more power than arithmetic! 

Typical implementation
- Read from

cache /register
-

- FPU to do MAC

- write back to cache / register

structured propagation of data
between compute units

-

Predictable performance ,
while minimizing
power



ROOFLINE MODEL

Operational Intensity: MAC Ops/weight byte 

Te
ra

Op
s/

se
c 

capture the performance
.

②
teat is available I supported

given
arithmetic intensity

- Slope and a flat line

- points along the

slope = mem
access

bound
- flat line : compute

bound

I



HASWELL ROOFLINE
Te

ra
Op

s/
se

c 

Operational Intensity: MAC Ops/weight byte 

state of the

art at
that
-

Eve

86 for ☐
qpvs

i
'

☐
☐



COMPARISON WITH CPU, GPU

K

-

-

☐

-

- 1- i. I
idle power

is

mink
tower power / performance

ratio



SELECTED LESSONS

• Latency more important than throughput for inference 

• LSTMs and MLPs are more common than CNNs 

• Performance counters are helpful 

• Remember architecture history 

Tail / Predictable

=
-

→ for benchmarking 1 debugging



SUMMARY

New workloads à new hardware requirements 

Domain specific design (understand workloads!)
No features to improve the average case
No caches, branch prediction, out-of-order execution etc. 
Simple design with MACs, Unified Buffer gives efficiency

Drawbacks
No sparse support, training support (TPU v2, v3)
Vendor specific ? 



DISCUSSION
https://forms.gle/LFeaeME4pFdHZdMV6



For all hardware

"" """ ""

?⃝
"" "

"° """£" %Ñ
"

⇒ incr) to reach 7ms
SLO

util &

e-put
but at

cost of

latency

:÷? '
can handle

Able to

mutters" meet 1ms

while >
look tfmt



How would TPUs impact serving frameworks like Nexus? What specific effects it could 
have on distributed serving systems architecture
-

- Goals

Nexus : high
Acc with

TPU : pred . latency

↳ have predictable latency for
a range of input sizes

could make Nexus profiles more stable

- less chance for stragglers



NEXT STEPS

Next week schedule
Tue: Midterm 2
Thu: Last class! (Fairness in ML, Summary)


