
CS 744: DATAFLOW

Shivaram Venkataraman
Fall 2022



ADMINISTRIVIA

Grading In Progress
- Assignment 2
- Course project proposal

About the Midterm



MID-SEMESTER FEEDBACK
More frequent change in paper reading group could be beneficial.
It was hard to find time for paper discussions, given the random assignments and fixed teammates
I would have liked to have chosen my reading group. I find it somewhat difficult to organize
…

I would like if more time was given for exam
Exams should be longer in time duration, very less time to actually think deep
…

It would've been nice if we had to … list any questions we had about the paper in the paper review form. 

More time for in-class discussions. 
Concentrating for 1.25 hours continuously is hard. A break in the middle for discussion?

maybe in-class quizzes??



PAPER REVIEW GROUPS

Optional from next class (Nov 3rd)

Re-shuffle groups to have new “suggested” groups

You can do any of
- Use (part of) suggested group
- Discuss with your own group
- Read on your own!



Scalable Storage Systems

Datacenter Architecture

Resource Management

Computational Engines

Machine Learning SQL Streaming Graph

Applications



DATAFLOW MODEL (?)



MOTIVATION

Streaming Video Provider 
- How much to bill each advertiser ?
- Need per-user, per-video viewing sessions
- Handle out of order data

Goals
- Easy to program
- Balance correctness, latency and cost



APPROACH

Separate user API from execution

Decompose queries into
- What is being computed
- Where in time is it computed
- When is it materialized
- How does it relate to earlier results



STREAMING VS. BATCH
Streaming Batch



TIMESTAMPS

Event time:

Processing time:



WINDOWING



WATERMARK or SKEW

System has 
processed all 
events up to 
12:02:30



API

ParDo:

GroupByKey:

Windowing
AssignWindow

MergeWindow



EXAMPLE

GroupByKey



TRIGGERS AND INCREMENTAL PROCESSING

Windowing: where in event time are data grouped
Triggering: when in processing time are groups emitted

Strategies
Discarding
Accumulating
Accumulating & Retracting



RUNNING EXAMPLE
PCollection<KV<String, Integer>> input = IO.read(...);
PCollection<KV<String, Integer>> output =

input.apply(Sum.integersPerKey());



GLOBAL WINDOWS, ACCUMULATE
PCollection<KV<String, Integer>> output = input

.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))
.accumulating())

.apply(Sum.integersPerKey());



GLOBAL WINDOWS, COUNT, DISCARDING
PCollection<KV<String, Integer>> output = input

.apply(Window.trigger(Repeat(AtCount(2)))
.discarding())

.apply(Sum.integersPerKey());



FiXED WINDOWS, MICRO BATCH
PCollection<KV<String, Integer>> output = input

.apply(Window.into(FixedWindows.of(2, MINUTES))
.trigger(Repeat(AtWatermark())))
.accumulating())



SUMMARY/LESSONS

Design for unbounded data: Don’t rely on completeness
Be flexible, diverse use cases

- Billing
- Recommendation
- Anomaly detection

Windowing, Trigger API to simplify programming on unbounded data



DISCUSSION
https://forms.gle/gUKw3ZP36JjBciABA





Consider you are implementing a micro-batch streaming API on top of Apache 
Spark. What are some of the bottlenecks/challenges you might have in building 
such a system?



NEXT STEPS

Next class: Flink


